Variations in Fluorescence Spectra of a Bacterial Population During Different Growth Phases

  • Lea FellnerEmail author
  • Florian Gebert
  • Arne Walter
  • Karin Grünewald
  • Frank Duschek
Conference paper


Biological agents like pathogenic bacteria represent a major threat to the public if spread. Bacteria may replicate in their host and can spread in an unpredictable way. Standoff detection based on laser-induced fluorescence may help to mitigate the associated risks. Nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and tryptophan are among others the most important fluorophores in bacteria. Bacteria adapt to their environment, and thus the same bacterial species may be composed of different components and relative concentrations of them depending on environmental conditions. Fluorescence spectra of a Bacillus thuringiensis population were compared during different growth phases. Laser pulses with two different excitation wavelengths, 280 and 355 nm, were used. For 280 nm excitation, the measured spectra show a difference in spectral features between the bacterial population before sporulation and after it was partially sporulated. In comparison, a smaller variation in 355 nm excited LIF spectra of a bacterial population during exponential growth and the aging population is observed.


Laser-induced fluorescence Bacteria Spores Growth phases Spectroscopy 


  1. 1.
    Buteau, S., Rowsell, S.: Biological material detection identification and monitoring: combining point and standoff sensors technologies. Proc. SPIE. 9995, 99950B–10 (2016)ADSGoogle Scholar
  2. 2.
    de Graef, M.R., Alexeeva, S., Snoep, J.L., de Mattos, M.J.T.: The steady-state and internal redox and state (NADH/NAD) and reflects and the external and redox state and is correlated and with catabolic adaption in Escherichia coli. J. Bacteriol. 181, 2351–2357 (1999)Google Scholar
  3. 3.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Errington, J.: Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1, 117–126 (2003). CrossRefGoogle Scholar
  5. 5.
    Hill, S.C., Pan, Y.-L., Williamson, C., Santarpia, J.L., Hill, H.H.: Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria: errata. Opt. Express. 22, 22817–22819 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Fischbach, T., Aleksejev, V., Duschek, F., Hausmann, A., Pargmann, C., Poryvkina, L., Sobolev, I., Babichenko, S., Handke, J.: Standoff detection of chemical and biological substances using laser induced fluorescence technique. In: 9th Future Security, Security Research Conference, Proceedings. 9th Future Security, Security Research Conference, pp. 327–334, Fraunhofer Verlag, Berlin, 16–18 Sept 2014 (2014)Google Scholar
  7. 7.
    Walter, A., Duschek, F., Fellner, L., Grünewald, K.M., Hausmann, A., Julich, S., Pargmann, C., Tomaso, H., Handke, J.: Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence. Int. Soc. Opt. Photon. 9824, 98240Y (2016). CrossRefGoogle Scholar
  8. 8.
    Setlow, P.: Germination of spores of bacillus species: what we know and do not know. J. Bacteriol. 196, 1297–1305 (2014)CrossRefGoogle Scholar
  9. 9.
    Sarasanandarajah, S., Kunnil, J., Bronk, B.V., Reinisch, L.: Two-dimensional multiwavelength fluorescence spectra of dipicolinic acid and calcium dipicolinate. Appl. Opt. 44, 1182–1187 (2005). ADSCrossRefGoogle Scholar
  10. 10.
    Pan, Y.-L.: Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence. J. Quant. Spectrosc. Radiat. Transf. 150, 12–35 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Pan, Y.-L., Hill, S.C., Santarpia, J.L., Brinkley, K., Sickler, T., Coleman, M., Williamson, C., Gurton, K., Felton, M., Pinnick, R.G., Baker, N., Eshbaugh, J., Hahn, J., Smith, E., Alvarez, B., Prugh, A., Gardner, W.: Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. Opt. Express. 22, 8165–8189 (2014). ADSCrossRefGoogle Scholar
  12. 12.
    Hill, S.C., Pinnick, R.G., Niles, S., Pan, Y.-L., Holler, S., Chang, R.K., Bottiger, J., Chen, B.T., Orr, C.-S., Feather, G.: Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal. Chem. Technol. 3, 221–239 (1999).<221::AID-FACT2>3.0.CO;2-7 CrossRefGoogle Scholar
  13. 13.
    Katz, A., Alimova, A., Minko, G., Savage, H.E., Will, D.V., Shah, M., Rosen, R.B., Alfano, R.R.: In situ changes in native fluorescence from Bacillus subtilis during endospore formation. Proc. SPIE. 4965, 134–137 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Kraus, M., Fellner, L., Gebert, F., Grünewald, K., Pargmann, C., Walter, A., Duschek, F.: Comparison of classification models of spectral data of laser induced fluorescence. In: 1st Scientific International Conference on CBRNE (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lea Fellner
    • 1
    Email author
  • Florian Gebert
    • 1
  • Arne Walter
    • 1
  • Karin Grünewald
    • 1
  • Frank Duschek
    • 1
  1. 1.German Aerospace CenterInstitute of Technical Physics, Langer Grund, LampoldshausenHardthausenGermany

Personalised recommendations