Skip to main content

Topics in Gravitation and Electromagnetism

  • Chapter
  • First Online:
  • 852 Accesses

Part of the book series: Progress in Mathematical Physics ((PMP,volume 73))

Abstract

First, we remind that derivation of continuum physics equations, namely the formulation of constitutive laws and conservation laws with respect to a given spacetime requires the identification of physical measurable quantities with geometrical variables (metric, torsion, and curvature on the material manifold).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Again, \(\hat {\nabla }_\mu \) denotes the four-dimensional connection in the Minkowski spacetime.

  2. 2.

    Hodge star operator The Hodge star operator is the unique linear map on a semi-Riemannian manifold, say \(\mathcal {M}\), from r-forms to n − r-forms defined by: \( \star : \varOmega ^r (\mathcal {M}) \to \varOmega ^{n-r} (\mathcal {M}) \), such that for all \((\omega , \omega ') \in \varOmega ^r (\mathcal {M})\), we have ω ∧ ω := 〈ω, ω′〉 where 〈, 〉 is an interior product on \(\mathcal {M}\) e.g. Nakahara (1996).

  3. 3.

    In the remaining part of this subsection the symbol \(\overline {\nabla }\) represents the Levi-Civita connection associated to the nonuniform metric tensor of the continuum manifold.

  4. 4.

    Care should be taken since suggesting the coordinate dependence \(e^{\kappa _\sigma x^\sigma }\) implicitly assumes that time and space are separated (method of variable separation). The covariance of the formulation is expected to allow us to derive the dispersion equation in any inertial frame in the framework of special relativity.

  5. 5.

    Physics background: This continuum version is the extension of Lagrangian for particles within Minkowskian spacetime. For physical particles with relativistic speeds, the action of a charged particle e moving within such a spacetime with electromagnetic field A μ takes the form of e.g. Kovetz (2000):

    $$\displaystyle \begin{aligned} &\mathcal{S} := \int \left[ - mc^2 - e \ u^\mu A\mu \right] d\tau, \quad d\tau := dt \sqrt{1 - v^2 / c^2}, \quad u^\mu : (1, v^i) \left( 1 - v^2 / c^2\right)^{-1},\\ &A_\mu : (- \phi, A_i) \end{aligned} $$

    where the Lagrangian function in terms of three dimensional variables (integration with respect to dt), with its Euler–Lagrange equation (Heaviside-Lorentz equation) hold:

    (6.82)

    modelling the charged particle e motion under given electromagnetic field (E, B).

  6. 6.

    In astrophysics, most planets as stars being electrically neutral, the Reissner-Nordström may be considered as only an academic exercise, although interesting, rather than a realistic and relevant field of gravitation.

  7. 7.

    For instance in the equation G 00 = 0, we define U(r) := e −2μ(r) to arrive to the differential equation U′(r) + U(r)∕r = 1∕r. We remark that U(r) := 1 is a particular solution of the non homogeneous equation. The second solution may be found by a change of variable V (r) := U(r) − 1.

References

  • Bamba K, Capoziello S, De Laurentis M, Nojiri S, Sáez-Gómez (2013) No further gravitational modes in F(T) gravity. Phys Lett B 727:194–198

    Google Scholar 

  • Brading KA, Ryckman TA (2008) Hilbert’s “Foundations of Physics”: gravitation and electromagnetism within the axiomatic method. Stud Hist Philos Mod Phys 39:102–153

    Article  MathSciNet  Google Scholar 

  • Bull P et al (2016) Beyond ΛCDM: problems, solutions, and the road ahead. Phys Dark Universe 12:56–99

    Google Scholar 

  • Capoziello S, Cardone VF, Piedipalumbo E, Sereno M, Troisi A (2003) Matching torsion Lambda-term with observations. Int J Mod Phys D 12:381–394

    Google Scholar 

  • Charap JM, Duff MJ (1977) Gravitational effects on Yang-Mills topology. Phys Lett 69B(4):445–447

    Article  Google Scholar 

  • Cho YM (1976a) Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys Rev D 14(10):2521–2525

    Article  MathSciNet  Google Scholar 

  • Chrusciel PT (1984) On the unified affine electromagnetism and gravitation theories. Acta Phys Polon B15:35–51

    Google Scholar 

  • de Andrade VC, Pereira JG (1999) Torsion and the electromagnetic field. Int J Mod Phys D 8(2):141–151

    Google Scholar 

  • Dias L, Moraes F (2005) Effects of torsion on electromagnetic fields. Braz J Phys 35(3A):636–640

    Article  Google Scholar 

  • Fernado J, Giglio T, Rodrigues WA Jr (2012) Gravitation and electromagnetism as Geometrical objects of Riemann–Cartan Spacetime structure. Adv Appl Clifford Algebr 22:640–664

    Google Scholar 

  • Fernandez-Nunez I, Bulashenko O (2016) Anisotropic metamaterial as an analogue of a black hole. Phys Lett A 380:1–8

    Article  Google Scholar 

  • Frankel T (1997) The geometry of physics: an introduction. Cambridge University Press, Cambridge

    Google Scholar 

  • Fumeron S, Pereira E, Moraes F (2015) Generation of optical vorticity from topological defects. Physica B 476:19–23

    Article  Google Scholar 

  • Gelman H (1966) Generalized conversion of electromagnetic units, measures, and equations. Am J Phys 34(191):291–295

    Article  Google Scholar 

  • Gonseth F (1926) Les fondements des mathématiqes: De la géométrie d’Euclide à la relativité générale et à l’intuitionisme Ed. Albert Blanchard, Paris

    Google Scholar 

  • Griffiths DJ (2011) Resource letter EM-1: electromagnetic momentum. Am J Phys 80(1):7–18

    Article  MathSciNet  Google Scholar 

  • Hackmann E, Lämmerzahl C (2008) Geodesic equation in Scharzschild-(anti-)de Sitter space-times. Phys Rev D 78:024035-1, 16

    Google Scholar 

  • Hammond RT (1987) Gravitation, torsion, and electromagnetism. Gen Relativ Gravit 20(8):813–827

    Article  MathSciNet  Google Scholar 

  • Hammond RT (1989) Einstein-Maxwell theory from torsion. Classical Quantum Gravitation 6:195–198

    Article  MathSciNet  Google Scholar 

  • Hartle JB, Sharp DH (1967) Variational principle for the equilibrium of a relativistic, rotating star. Astrophys J 147:317–333

    Article  Google Scholar 

  • Hehl FW (2008) Maxwell’s equations in Minkowski’s world: their premetric generalization and the electromagnetic energy-momentum tensor. Ann Phys 17(0–10):691–704

    Article  MathSciNet  Google Scholar 

  • Hehl FW, Obukhov YN (2003) Foundations of classical electrodynamics: charge, flux, and metric. Birkhäuser, Boston

    Chapter  Google Scholar 

  • Hehl FW, von der Heyde P (1973) Spin and the structure of spacetime. Ann Inst Henri Poincaré Sect A 19(2):179–196

    Google Scholar 

  • Hehl FW, von der Heyde P, Kerlick GD, Nester JM (1976) General relativity with spin and torsion: foundations and prospects. Rev Mod Phys 48(3):393–416

    Article  MathSciNet  Google Scholar 

  • Itin Y (2012) Covariant jump conditions in electromagnetism. Ann Phys 327359–375

    Google Scholar 

  • Kleinert H (2008) Multivalued fields: in condensed matter, electromagnetism, and gravitation. World Scientific, Singapore

    Book  Google Scholar 

  • Kovetz A (2000) Electromagnetic theory. Oxford Science Publications, New York

    MATH  Google Scholar 

  • Landau L, Lifchitz EM (1971) The classical theory of fields: course of theoretical physics volume 2. Third Revised English edn. Pergamon Press, Oxford

    Google Scholar 

  • Leonhardt U, Philbin TG (2006) General relativity in electrical engineering. New J Phys 8/247:1–18

    MathSciNet  Google Scholar 

  • Leonhardt U, Piwnicki P (2000) Relativistic effects of light in moving media with extremely low group velocity. Phys Rev Lett 84/5:822–825

    Article  Google Scholar 

  • Lichnerowicz A (1955) Théories relativistes de la gravitation et de léléctromagnétisme. Masson, Paris

    MATH  Google Scholar 

  • Lovelock D (1969) The uniqueness of the Einstein field equations in a four-dimensional space. Arch Ration Anal Mech 33:54–70

    Article  MathSciNet  Google Scholar 

  • Maldacena J (1998) The Large N limit of superconformal field theories and supergravity. Adv Theor Math Phys 2:231–252

    Article  MathSciNet  Google Scholar 

  • Manoff S (2001b) Deviation operator and deviation equations over spaces with affine connections and metrics. J Geom Phys 39:337–350

    Article  MathSciNet  Google Scholar 

  • Milonni PW, Boyd RW (2010) Momentum of light on a dielectric medium. Adv Opt Photon 2:519–553

    Article  Google Scholar 

  • Nakahara (1996) Geometry, topology, and physics. In: Brower D (ed) Graduate student series in physics. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Nieto JA, Saucedo J, Villanueva VM (2007) Geodesic deviation equation for relativistic tops and the detection of gravitational waves. Rev Mex Fís S 53(2):141–145

    MathSciNet  MATH  Google Scholar 

  • Obukhov YN (2008) Electromagnetic energy and momentum in moving media. Ann Phys Berlin 17(9–10):830–851

    Article  MathSciNet  Google Scholar 

  • Obukhov YN, Hehl FW (2003) Electromagnetic energy-momentum and forces in matter. Phys Lett A 311:277–284

    Article  Google Scholar 

  • Oprisan CD, Zet G (2006) Gauge theory on a space-time with torsion. Rom J Physiol 51(5–6):531–540

    MathSciNet  MATH  Google Scholar 

  • Plebanski J (1960) Electromagnetic waves in gravitational fields. Phys Rev 118(5):1396–1408

    Article  MathSciNet  Google Scholar 

  • Poplawski NJ (2009) A variational formulation of relativistic hydrodynamics. Phys Lett A 373:2620–2621

    Article  MathSciNet  Google Scholar 

  • Poplawski NJ (2010) Torsion as electromagnetism and spin. Int J Theor Phys 49(7):1481–1488

    Article  MathSciNet  Google Scholar 

  • Prasanna AR (1975a) Maxwell’s equations in Riemann–Cartan space U 4. Phys Lett A 54(1):17–18

    Article  MathSciNet  Google Scholar 

  • Prasanna AR (1975b) Static fluid spheres in Einstein–Cartan theory. Phys Rev D 11(8):2076–2082

    Article  Google Scholar 

  • Puntigam RA, Lämmerzahl C, Hehl FW (1997) Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle. Classical Quantum Gravitation 14:1347–1356

    Article  MathSciNet  Google Scholar 

  • Rakotomanana RL (1997) Contribution à la modélisation géométrique et thermodynamique d’une classe de milieux faiblement continus. Arch Ration Mech Anal 141:199–236

    Article  MathSciNet  Google Scholar 

  • Rakotomanana RL (2003) A geometric approach to thermomechanics of dissipating continua. Progress in Mathematical Physics Series. Birkhaüser, Boston

    Google Scholar 

  • Rousseaux G (2008) On the electrodynamics of Minkowski at low velocities. Europhys Lett 84:20002/p1-p3

    Article  Google Scholar 

  • Ryder L (2009) Introduction to general relativity. Cambridge University Press, New York

    Book  Google Scholar 

  • Schücker T, Tilquin A (2012) Torsion, an alternative to the cosmological constant? Int J Mod Phys D 21(13):1250089

    Article  MathSciNet  Google Scholar 

  • Schutzhold R, Plunien G, Soff G (2002) Dielectric black hole analogs. Phys Rev Lett 88(6):061101/1-061101/4

    Article  Google Scholar 

  • Smalley LL (1986) On the extension of geometric optics from Riemaniann to Riemann–Cartan spacetime. Phys Lett A 117(6):267–269

    Article  MathSciNet  Google Scholar 

  • Smalley LL, Krisch JP (1992) Minimal coupling of electromagnetic fields in Riemann–Cartan space-times for perfect fluids with spin density. J Math Phys 33(3):1073–1081

    Article  MathSciNet  Google Scholar 

  • Sotiriou TP, Liberati S (2007) Metric-affine \(f \left ( R \right )\) theories of gravity. Ann Phys 322:935–966

    Article  MathSciNet  Google Scholar 

  • Tiwari RN, Ray S (1997) Static spherical charged dust electromagnetic mass models in Einstein–Cartan theory. Gen Relativ Gravit 29(6):683–690

    Article  MathSciNet  Google Scholar 

  • Vandyck MA (1996) Maxwell’s equations in spaces with non-metricity and torsion. J Phys A: Math Gen 29:2245–2255

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

R. Rakotomanana, L. (2018). Topics in Gravitation and Electromagnetism. In: Covariance and Gauge Invariance in Continuum Physics. Progress in Mathematical Physics, vol 73. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-91782-5_6

Download citation

Publish with us

Policies and ethics