Skip to main content

Curvature

  • 11k Accesses

Part of the Graduate Texts in Mathematics book series (GTM,volume 176)

Abstract

In this chapter, we begin our study of the local invariants of Riemannian metrics. Starting with the question of whether all Riemannian metrics are locally isometric, we are led to a definition of the Riemannian curvature tensor as a measure of the failure of second covariant derivatives to commute. Then we prove the main result of this chapter: a Riemannian manifold has zero curvature if and only if it is flat, or locally isometric to Euclidean space. At the end of the chapter, we explore how the curvature can be used to detect conformal flatness.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91755-9_7
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-91755-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 7.1:
Fig. 7.2:
Fig. 7.3:

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lee .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.M. (2018). Curvature. In: Introduction to Riemannian Manifolds. Graduate Texts in Mathematics, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-319-91755-9_7

Download citation