Skip to main content

Curvature and Topology

  • 10k Accesses

Part of the Graduate Texts in Mathematics book series (GTM,volume 176)

Abstract

In this final chapter, we bring together most of the tools we have developed so far to prove some significant local-to-global theorems relating curvature and topology of Riemannian manifolds. The main results are (1) the Killing–Hopf theorem, which characterizes complete, simply connected manifolds with constant sectional curvature; (2) the Cartan–Hadamard theorem, which topologically characterizes complete, simply connected manifolds with nonpositive sectional curvature; and (3) Myers’s theorem, which says that a complete manifold with Ricci curvature bounded below by a positive constant must be compact and have a finite fundamental group.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91755-9_12
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-91755-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 12.1:
Fig. 12.2:
Fig. 12.3:
Fig. 12.4:
Fig. 12.5:

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lee .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.M. (2018). Curvature and Topology. In: Introduction to Riemannian Manifolds. Graduate Texts in Mathematics, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-319-91755-9_12

Download citation