Signal Processing Methods for Light Field Displays

  • Robert Bregovic
  • Erdem Sahin
  • Suren Vagharshakyan
  • Atanas GotchevEmail author


This chapter discusses the topic of emerging light field displays from a signal processing perspective. Light field displays are defined as devices which deliver continuous parallax along with the focus and binocular visual cues acting together in rivalry-free manner. In order to ensure such functionality, one has to deal with the light field, conceptualized by the plenoptic function and its adequate parametrization, sampling and reconstruction. The light field basics and the corresponding display technologies are overviewed in order to address the fundamental problems of analyzing light field displays as signal processing channels, and of capturing and representing light field visual content for driving such displays. Spectral analysis of multidimensional sampling operators is utilized to profile the displays in question, and modern sparsification approaches are employed to develop methods for high-quality light field reconstruction and rendering.


  1. 1.
    A. Gershun, “The light field,” Journal of Mathematics and Physics, vol. 18, no. 1-4, pp. 51-151, 1939.CrossRefGoogle Scholar
  2. 2.
    E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Computational Models of Visual Processing. MIT Press, pp. 3-20, 1991.Google Scholar
  3. 3.
    M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. ACM SIGGRAPH, 1996, pp. 31-42.Google Scholar
  4. 4.
    S.J.Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph”, in Proc. ACM SIGGRAPH, 1996, pp. 43-54.Google Scholar
  5. 5.
    P. Moon and D.E. Spencer, The Photic Field. MIT Press, 1981.Google Scholar
  6. 6.
    R. Bregović, P. T. Kovács, T. Balogh, and A. Gotchev, “Display-specific light-field analysis,” in Proc. SPIE 9117, 911710, 2014.Google Scholar
  7. 7.
    C. K. Liang, Y. C. Shih, and H. H. Chen, “Light field analysis for modeling image formation,” IEEE Trans. Image Process. Vol. 20, no. 2, 446–460, 2011.MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Bregović, P. T. Kovács, and A. Gotchev, “Optimization of light field display-camera configuration based on display properties in spectral domain,” Optics Express, vol. 24, no. 3, pp. 3067-3088, Feb. 2016.CrossRefGoogle Scholar
  9. 9.
    R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image analysis: An approach to determine structure from motion,” Int. J. Comput. Vis., vol. 1, no. 1, pp. 7-55, 1987.CrossRefGoogle Scholar
  10. 10.
    J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proc. ACM SIGGRAPH 2000, pp. 307-318.Google Scholar
  11. 11.
    C. Zhang and T. Chen, “Spectral analysis for sampling image-based rendering data,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp 1038-1050, Nov. 2003.Google Scholar
  12. 12.
    J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic layer-based modeling for image based rendering,” IEEE Trans. Image Process., vol. 22, no. 9, pp. 3405–3419, Sep. 2013.Google Scholar
  13. 13.
    C. Gilliam, P.L. Dragotti, and M. Brookes, “On the spectrum of the plenoptic function,” IEEE Trans. Image Proc., vol. 23, no. 2, pp. 502-516, Feb. 2014.MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. R. Proffitt and C. Caudek, “Depth perception and the perception of events,” in Handbook of Psychology. New York, NY, 2002.Google Scholar
  15. 15.
    A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable Light Fields: Matching the Requirements Between the Human Visual System and Autostereoscopic 3-D Displays,” Proc IEEE vol. 102, no. 10, pp. 1571-1587, 2014.CrossRefGoogle Scholar
  16. 16.
    L. Goldmann and T. Ebrahimi, “Towards reliable and reproducible 3-D video quality assessment,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 8043, 2011.Google Scholar
  17. 17.
    A. Boev, R. Bregović, and A. Gotchev, “Signal processing for stereoscopic and multi-view 3D displays,” in Handbook of Signal Processing Systems, 2nd edition, S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, eds., Springer, 2013.Google Scholar
  18. 18.
    M. S. Banks, D. M. Hoffman, J. Kim, and G. Wetzstein, “3D Displays,” Annual Review of Vision Science, vol. 2, pp. 397-435, 2016.CrossRefGoogle Scholar
  19. 19.
    D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” Journal of Vision, vol. 8, no. 33, 2008.CrossRefGoogle Scholar
  20. 20.
    F. L. Kooi and M, Lucassen, “Visual comfort of binocular and 3D displays,” in Proc. SPIE 4299, Human Vision and Electronic Imaging VI, 586, 2001.Google Scholar
  21. 21.
    P. A. Howarth, “Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review,” Ophthalmic and Physiological Optics, vol. 31, pp 111–122, 2011.CrossRefGoogle Scholar
  22. 22.
    M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A, vol. 33, no. 12, 2348-2364, 2016.CrossRefGoogle Scholar
  23. 23.
    Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” in Proc. of Third International Display Workshops (IDW), 1996.Google Scholar
  24. 24.
    H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” in Proc. SPIE 9011, 90111H, 2014.Google Scholar
  25. 25.
    Y. Kim, et al., “Accommodative response of integral imaging in near distance,” J. Disp. Technol. Vol. 8, no. 2, pp. 70–78, 2012.CrossRefGoogle Scholar
  26. 26.
    Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express vol. 19, no. 2, pp. 704–716, 2011.CrossRefGoogle Scholar
  27. 27.
    G. Lippmann, “Epreuves reversibles Photographies integrals,” Comptes Rendus Academie des Sciences, vol. 146, pp. 446–451, 1908.Google Scholar
  28. 28.
    J.-H. Jung, K. Hong and B. Lee, “Effect of viewing region satisfying super multi-view Condition in Integral Imaging,” SID Symposium Digest of Technical Papers, vol. 43, pp. 883–886, 2012.CrossRefGoogle Scholar
  29. 29.
    H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID, vol. 22, no. 3, pp. 158–162, 2014.CrossRefGoogle Scholar
  30. 30.
    H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express, vol. 18, no. 25, pp. 25573–25583, 2010.CrossRefGoogle Scholar
  31. 31.
    F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. vol. 36, pp. 1598–1603, 1997.CrossRefGoogle Scholar
  32. 32.
    X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. vol. 52, no. 4, pp. 546-560, 2013.CrossRefGoogle Scholar
  33. 33.
    J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. Vol. 28, no. 16, pp. 1421–1423, 2003.CrossRefGoogle Scholar
  34. 34.
    S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. vol. 42, no. 20, pp. 4186–4195, 2003.CrossRefGoogle Scholar
  35. 35.
    S.- Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications” J. Inf. Disp., vol. 15, no. 1, pp. 37–46, 2014.CrossRefGoogle Scholar
  36. 36.
    C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design”, in Proc. SPIE, 3012, pp.179-186, 1997.Google Scholar
  37. 37.
    Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display”, Opt. Express, vol. 19, no. 5, pp. 4129–4139, 2011.CrossRefGoogle Scholar
  38. 38.
    B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, Display. New York, NY, USA: Springer-Verlag, 2009.Google Scholar
  39. 39.
    J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon., vol. 5, no. 4, pp. 456–535, 2013.CrossRefGoogle Scholar
  40. 40.
    T. Honda, Y. Kajiki, S. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3-D images,” in Three-Dimensional Television, Video and Display Technologies. Berlin, Germany: Springer-Verlag, pp. 461–487, 2002.Google Scholar
  41. 41.
    Y. Takaki, Y. Urano, and H. Nishio, “Motion-parallax smoothness of short-, medium-, and long-distance 3D image presentation using multi-view displays,” Opt. Express, vol. 20, no. 24, pp. 27180-27197, 2012.CrossRefGoogle Scholar
  42. 42.
    Y. Takaki, “Development of super multi-view displays,” ITE Transactions on Media Technology and Applications, vol. 2, no. 1, pp. 8–14, 2014.CrossRefGoogle Scholar
  43. 43.
    Y. Kajiki, H. Yoshikawa and T. Honda: “Hologram-like video images by 45-view stereoscopic display”, in Proc. SPIE, 3012, pp.154-166, 1997.Google Scholar
  44. 44.
    T. Honda, D. Nagai and M. Shimomatsu: “Development of 3-D display system by a fan-like array of projection optics”, in Proc. SPIE, 4660, pp.191-199, 2001.Google Scholar
  45. 45.
    H. Nakanuma, H. Kamei, and Y. Takaki: “Natural 3D display with 128 directional images used for human-engineering evaluation”, in Proc. SPIE, 5664, pp.28-35, 2005.Google Scholar
  46. 46.
    K. Kikuta and Y. Takaki: “Development of SVGA resolution 128-directional display”, in Proc. SPIE, 6490, pp.64900U-1-8, 2007.Google Scholar
  47. 47.
    T. Kanebako and Y. Takaki: “Time-multiplexing display module for high-density directional display”, in Proc. SPIE, 6803, pp.68030P-1-8, 2008.Google Scholar
  48. 48.
    Y. Takaki and N. Nago: “Multi-projection of lenticular displays to construct a 256-view super multi-view display”, Opt. Express, vol. 18, no. 8, pp.8824-8835, 2010.CrossRefGoogle Scholar
  49. 49.
    T. Balogh, “The HoloVizio system,” in Proc. SPIE 6055, 12 pages, 2006.Google Scholar
  50. 50.
    J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Applied Physics Letters, vol. 12, no. 1, pp. 10-12, 1968.CrossRefGoogle Scholar
  51. 51.
    D. J. DeBitetto, “Holographic Panoramic Stereograms Synthesized from White Light Recordings,” Applied Optics, vol. 8, no. 8, pp. 1740-1741, 1969.CrossRefGoogle Scholar
  52. 52.
    M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Proc. SPIE, vol. 2176, pp. 73-84, 1994.Google Scholar
  53. 53.
    F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Applied Optics, vol. 48, no. 34, pp. H48-H53, 2009.CrossRefGoogle Scholar
  54. 54.
    D. Brotherton-Ratcliffe, F. Vergnes, A. Rodin, and M. Grichine Holographic Printer. U.S. Patent 1999b; No. US7800803B2.Google Scholar
  55. 55.
    Zebra Imaging Inc. Company (2012)
  56. 56.
    X. Li, C. P. Chen, H. Gao, Z. He, Y. Xiong, H. Li, W. Hu, Z. Ye, G. He, J. Lu, and Y. Su, “Video-rate holographic display using azo-dyedoped liquid crystal,” J. Display Technol., vol. 10, pp. 438–443, 2014.CrossRefGoogle Scholar
  57. 57.
    S. Tay, M. Yamamoto, and N. Peyghambarian, “An updateable holographic 3-D display based on photorefractive polymers,” SID Symp. Dig. Tech. Pap. 39, pp. 356–357, 2008.Google Scholar
  58. 58.
    M. Lucente, Diffraction-specific fringe computation for electro-holography, Ph.D. dissertation, Cambridge, MA, USA, 1994.Google Scholar
  59. 59.
    T. Yatagai, “Three-dimensional displays using computer-generated holograms,” Optics Communications, vol. 12, no. 1, pp. 43-45, 1974.CrossRefGoogle Scholar
  60. 60.
    J. Mäkinen, From light fields to wavefields: Hologram generation from multiperspective images, Master’s thesis, Tampere University of Technology, Finland, 2017.Google Scholar
  61. 61.
    B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. Hoboken, N.J: John Wiley & Sons, 2007.Google Scholar
  62. 62.
    Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” in Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903, 2010.Google Scholar
  63. 63.
    H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express vol. 23, no. 4, 3901-3913, 2015.CrossRefGoogle Scholar
  64. 64.
    Ives FE. 1903. Parallax stereogram and process of making same. US Patent No. 725,567.Google Scholar
  65. 65.
    D. Lanman, M. Hirsch, Y. Kim Y, R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. vol. 29, no. 6, 163: 10 pages, 2010.CrossRefGoogle Scholar
  66. 66.
    G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar, “Tensor displays: compressive fight field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. vol. 31, 80: 11 pages, 2012.CrossRefGoogle Scholar
  67. 67.
    G. Wetzstein, D. Lanman, W. Heidrich, R. Raskar, ”Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. vol. 30, 95: 11 pages, 2011.CrossRefGoogle Scholar
  68. 68.
    F-C. Huang, K. Chen, G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph., vol. 34, 60: 12 pages, 2015.Google Scholar
  69. 69.
    M. Hirsch, G. Wetzstein, R. Raskar, ”A Compressive Light Field Projection System,” ACM Trans. Graph., vol. 33, 4: 12 pages, 2014.CrossRefGoogle Scholar
  70. 70.
    J.H. Lee, J. Park, D. Nam, S.Y. Choi, D.S. Park, and C.Y. Kim, “Optimal projector configuration design for 300-Mpixels multi-projection 3D display,” Opt. Express vol. 21, no. 22, 26820–26835, 2013.CrossRefGoogle Scholar
  71. 71.
    E. Dubois, “The sampling and reconstruction of time-varying imagery with application in video systems,” in Proc. IEEE 73, 502–522, 1985.CrossRefGoogle Scholar
  72. 72.
    E. Dubois, “Video sampling and interpolation,” in The Essential Guide to Video Processing, J. Bovik, ed., Academic Press, 2009.Google Scholar
  73. 73.
    P.Q. Nguyen and D. Stehlé, “Low-dimensional lattice basis reduction revisited,” ACM Trans. Algorithms, vol. 5, no. 4, 46 pages, 2009.MathSciNetCrossRefGoogle Scholar
  74. 74.
    F. Aurenhammer, “Voronoi diagrams – A survey of a fundamental geometric data structure,” ACM Computing Surveys vol. 23, pp. 245-405, 1991.CrossRefGoogle Scholar
  75. 75.
    E.B. Tadmor and R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University, 2011.Google Scholar
  76. 76.
    P. T. Kovács, K. Lackner, A. Barsi, A. Balázs, A. Boev, R. Bregović, and A. Gotchev, “Measurement of perceived spatial resolution in 3D light-field displays,” in Proc. IEEE Int. Conf. Image Processing, Paris, France, pp. 768–772, Oct. 2014.Google Scholar
  77. 77.
    P. T. Kovács, R. Bregović, A. Boev, A. Barsi, and A. Gotchev, “Quantifying spatial and angular resolution of 3D light-field displays,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1213-1222, Oct. 2017.CrossRefGoogle Scholar
  78. 78.
    Z. Lin and H.-Y. Shum, “A geometric analysis of light field rendering,” Int’l J. of Computer Vision, vol. 58, no. 2, pp. 121–138, 2004.CrossRefGoogle Scholar
  79. 79.
    R. Ng, “Fourier Slice Photography,” in Proc. ACM SIGGRAPH, pp. 735–744, July 2005.Google Scholar
  80. 80.
    I. Tosic and K. Berkner, “Light Field Scale-Depth Space Transform for Dense Depth Estimation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 441–448, June 2014.Google Scholar
  81. 81.
    K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung, “Efficient 3D Object Segmentation from Densely Sampled Light Fields with Applications to 3D Reconstruction,” ACM Trans. on Graphics, vol. 35, no. 3, 2016.CrossRefGoogle Scholar
  82. 82.
    M. Tanimoto, “Overview of FTV (free-viewpoint television),” in Proc. IEEE Conf. Multimedia and Expo (ICME 2009), pp. 1552–1553, June 2009.Google Scholar
  83. 83.
    J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-Corrected Light Field Rendering for Creating a Holographic Stereogram,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–13, 2012.Google Scholar
  84. 84.
    H. Shum, S. Chan, and S. Kang, Image-Based Rendering. Springer- Verlag, 2007.Google Scholar
  85. 85.
    S. Vagharshakyan, R. Bregovic, and A. Gotchev, "Light Field Reconstruction Using Shearlet Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no.1, pp. 133-147, Jan. 2018.Google Scholar
  86. 86.
    C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstructured lumigraph rendering,” in Proc. 28th Conf. on Computer Graphics and Interactive Techniques, pp. 425-432, 2001.Google Scholar
  87. 87.
    S. Fuhrmann, F. Langguth and M. Goesele “MVE – A Multi-View Reconstruction Environment,” in Proc EUROGRAPHICS Workshops on Graphics and Cultural Heritage, 2014.Google Scholar
  88. 88.
    S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski “A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in Proc. Conference on Computer Vision and Pattern Recognition (CVPR), 2006.Google Scholar
  89. 89.
    H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Information,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, Feb. 2008.Google Scholar
  90. 90.
    S. N. Sinha, D. Scharstein and R. Szeliski, “Efficient High- Resolution Stereo Matching Using Local Plane Sweeps,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1582–1589, June 2014.Google Scholar
  91. 91.
    G. Zhang, J. Jia, T. Wong, and H. Bao, “Consistent Depth Maps Recovery from a Video Sequence,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 974–988, June 2009.Google Scholar
  92. 92.
    C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proc. Stereoscopic Displays Appl, pp. 93-104, 2002.Google Scholar
  93. 93.
    J. Pearson, M. Brookes, and P. Dragotti, “Plenoptic Layer- Based Modeling for Image Based Rendering,” IEEE Trans. Image Processing, vol. 22, no. 9, pp. 3405–3419, Sept. 2013.Google Scholar
  94. 94.
    B. Olshausen and D. Field “Emergence of simple-cell receptive field properties by learning a sparse code for natural images”, Nature vol. 381, pp. 607-609, 1996.Google Scholar
  95. 95.
    D. Donoho, “Sparse Components Analysis and Optimal Atomic Decomposition”, Technical Report, Statistics, Stanford, 1998.Google Scholar
  96. 96.
    E. J. Candes, D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Stanford University, 1999.Google Scholar
  97. 97.
    E. J. Candes and D. L. Donoho, “New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities,” Comm. Pure Appl. Math., vol. 57, no. 2, pp. 219–266, 2004.CrossRefGoogle Scholar
  98. 98.
    G. Kutyniok, Shearlets: Multiscale analysis for multivariate data. Springer Science & Business Media, 2012.Google Scholar
  99. 99.
    M. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091–2106, Dec 2005.CrossRefGoogle Scholar
  100. 100.
    G.Easley, D.Labate, and W.-Q.Lim, “Optimally sparse image representations using shearlets,” in Proc. Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC ’06), pp. 974–978, Oct 2006.Google Scholar
  101. 101.
    G. Kutyniok and W.-Q. Lim, “Compactly supported shearlets are optimally sparse,” J. of Approximation Theory, vol. 163, no. 11, pp. 1564 – 1589, 2011.MathSciNetCrossRefGoogle Scholar
  102. 102.
    J.-L. Starck, Y. Moudden, J. Bobin, M. Elad, and D. L. Donoho, “Morphological Component Analysis,” in Proc. SPIE 5914 Wavelets XI, 59140Q, May 2005.Google Scholar
  103. 103.
    J. Fadili, J.-L. Starck, M. Elad, and D. Donoho, “Mcalab: Reproducible Research in Signal and Image Decomposition and Inpainting,” IEEE Computing in Science & Engineering, vol. 12, no. 1, pp. 44–63, 2010.Google Scholar
  104. 104.
    L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain,” ACM Trans. on Graphics, vol. 34, no. 1, 2014.CrossRefGoogle Scholar
  105. 105.
    K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Transactions on Graphics, vol. 32, no. 4, pp. 1-11, 2013.CrossRefGoogle Scholar
  106. 106.
    Z. Li, Image patch modeling in a light field. PhD thesis, EECS Department, University of California, Berkeley, May 2014.Google Scholar
  107. 107.
    D. C. Schedl, C. Birklbauer, and O. Bimber, “Directional Super-Resolution by Means of Coded Sampling and Guided Upsampling,” in Proc. IEEE Conf. Computational Photography (ICCP), pp. 1–10, 2015.Google Scholar
  108. 108.
    O. Johannsen, A. Sulc, and B. Goldluecke, "What Sparse Light Field Coding Reveals about Scene Structure," in Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 3262-3270, 2016.Google Scholar
  109. 109.
    N.K. Kalantari, T.-C. Wangand and R. Ramamoorthi, “Learning-Based View Synthesis for Light Field Cameras,” ACM Trans. on Graphics, vol. 35, no. 6, 2016.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Robert Bregovic
    • 1
  • Erdem Sahin
    • 1
  • Suren Vagharshakyan
    • 1
  • Atanas Gotchev
    • 1
    Email author
  1. 1.Laboratory of Signal ProcessingTampere University of TechnologyTampereFinland

Personalised recommendations