Skip to main content

Thyroglobulin

  • Chapter
  • First Online:
  • 1270 Accesses

Abstract

Thyroglobulin (Tg) is the large (660 kDa) glycoprotein that is synthesized exclusively by thyroid follicular cells and serves as the scaffold for thyroid hormonogenesis. Since thyroid tissue is the only source of circulating Tg, serum Tg measurement is the cornerstone of post-operative biochemical monitoring for recurrence in patients with follicular-derived (differentiated) thyroid cancer (DTC). However, technical limitations negatively impact the clinical utility and interpretation of Tg measurements, irrespective of whether the Radioimmunoassay, (RIA), Immunometric assay, (IMA) or Liquid Chromatography Tandem Mass Spectrometry, (LC-MS/MS) class of method is used. There are intrinsic sensitivity differences between the different methodologies as well as between assays from the same methodologic class. Methods also differ in specificity for detecting the heterogeneous Tg isoforms in serum, resulting in wide between-method discordances that preclude changing methods while monitoring DTC patients. The Tg autoantibodies (TgAb) that are present in approximately 25% of DTC patients remain a persistent problem, causing interference with primarily the IMA class of methods, but also potentially influencing the clinical utility of RIA and LC-MS/MS measurements by in-vitro and/or in-vivo mechanisms. This chapter will discuss the biological factors and technical limitations that impact the clinical utility of serial Tg monitoring of DTC patients with and without TgAb present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CRM-457:

Certified reference material

CV:

Coefficient of variation

DTC:

Differentiated thyroid cancer

FNA:

Fine needle aspiration

FNAB:

Fine needle aspiration biopsy

FS:

Functional sensitivity

HAb:

Heterophile antibody

HAMA:

Human anti-mouse antibody

hCG:

Human chorionic gonadotropin

IMA:

Immunometric assay

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

LOQ:

Limit of quantitation

L-T4:

Levothyroxine

Lx:

Lobectomy

MAb:

Monoclonal antibody

MCO:

Manufacturer cutoff

NPV:

Negative predictive value

PAb:

Polyclonal antibody

PPV:

Positive predictive value

PTC:

Papillary thyroid cancer

PTH:

Parathyroid hormone

RAI:

Radioiodine

RF:

Rheumatoid factor

rhTSH:

Recombinant human TSH

RIA:

Radioimmunoassay

Tg:

Thyroglobulin

TgAb:

Thyroglobulin autoantibodies

TRAb:

TSH receptor antibodies

TSH:

Thyroid stimulating hormone

References

  1. Baas FBH, Van Geurts KA, Melsert R, Pearson PL, de Vijlder JJM, Van Ommen GJB. The human thyroglobulin gene: a ploymorphic marker localized distal to c-myc on chromosome 8 band q 24. Hum Genet. 1985;69:138–43.

    Article  CAS  PubMed  Google Scholar 

  2. Matakidou A, Hamel N, Popat S, Henderson K, Kantemiroff T, Harmer C, et al. Risk of non-medullary thyroid cancer influenced by polymorphic variation in the thyroglobulin gene. Carcinogenesis. 2004;25(3):369–73.

    Article  CAS  PubMed  Google Scholar 

  3. Hishinuma A, Fukata S, Kakudo K, Murata Y, Ieiri T. High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid. 2005;15:1079–84.

    Article  CAS  PubMed  Google Scholar 

  4. Vono-Toniolo J, Rivolta CM, Targovnik HM, Medeiros-Neto G, Kopp P. Naturally occurring mutations in the thyroglobulin gene. Thyroid. 2005;15:1021–33.

    Article  CAS  PubMed  Google Scholar 

  5. Caputo M, Rivolta CM, Mories T, Corrales JJ, Galindo P, Gonzalez-Sarmiento R, et al. Analysis of thyroglobulin gene polymorphisms in patients with autoimmune thyroiditis. Endocrine. 2010;37(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  6. Citterio CE, Machiavelli GA, Miras MB, Gruñeiro-Papendieck L, Lachlan K, Sobrero G, et al. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism. Mol Cell Endocrinol. 2013;365:277–91.

    Article  CAS  PubMed  Google Scholar 

  7. Rubio IG, Medeiros-Neto G. Mutations of the thyroglobulin gene and its relevance to thyroid disorders. Curr Opin Endocrinol Diabetes Obes. 2009;16:373–8.

    Article  CAS  PubMed  Google Scholar 

  8. Akdi A, Pérez G, Pastor S, Castell J, Biarnés J, Marcos R, et al. Common variants of the thyroglobulin gene are associated with differentiated thyroid cancer risk. Thyroid. 2011;21:519–25.

    Article  CAS  PubMed  Google Scholar 

  9. Siraj AK, Masoodi T, Bu R, Beg S, Al-Sobhi SS, Al-Dayel F, et al. Genomic profiling of thyroid cancer reveals a role for thyroglobulin in metastasis. Am J Hum Genet. 2016;98(6):1170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van de Graaf SA, Ris-Stalpers C, Pauws E, Mendive FM, Targovnik HM, de Vijlder JJ. Up to date with human thyroglobulin. J Endocrinol. 2001;170:307–21.

    Article  PubMed  Google Scholar 

  11. De Felice M, Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev. 2004;25:722–46.

    Article  PubMed  CAS  Google Scholar 

  12. Lin JD. Thyroglobulin and human thyroid cancer. Clin Chim Acta. 2008;388(1-2):15–21.

    Article  CAS  PubMed  Google Scholar 

  13. Xavier AC, Maciel RM, Vieira JG, Dias-da-Silva MR, Martins JR. Insights into the posttranslational structural heterogeneity of thyroglobulin and its role in the development, diagnosis, and management of benign and malignant thyroid diseases. Arch endocrinol metabol. 2016;60(1):66–75.

    Article  Google Scholar 

  14. Arvan P, Kim PS, Kuliawat R, Prabakaran D, Muresan Z, Yoo SE, et al. Intracellular protein transport to the thyrocyte plasma membrane: potential implications for thyroid physiology. Thyroid. 1997;7:89–105.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Di Jeso B, Arvan P. The cholinesterase-like domain of thyroglobulin functions as an intramolecular chaperone. J Clin Invest. 2008;118:2950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Jeso B, Ulianich L, Pacifico F, Leonardi A, Vito P, Consiglio E, et al. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem J. 2003;370:449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimizu K, Nakamura K, Kobatake S, Satomura S, Maruyama M, Kameko F, et al. The clinical utility of Lens culinaris agglutinin-reactive thyroglobulin ratio in serum for distinguishing benign from malignant conditions of the thyroid. Clin Chim Acta. 2007;379:101–4.

    Article  CAS  PubMed  Google Scholar 

  18. Kanai T, Amakawa M, Kato R, Shimizu K, Nakamura K, Ito K, et al. Evaluation of a new method for the diagnosis of alterations of lens culinaris agglutinin binding of thyroglobulin molecules in thyroid carcinoma. Clin Chem Lab Med. 2009;47(10):1285–90.

    Article  CAS  PubMed  Google Scholar 

  19. Schneider AB, Dudlak D. Differential incorporation of sulfate into the chondroitin chain and complex carbohydrate chains of human thyroglobulin: studies in normal and neoplastic thyroid tissue. Endocrinology. 1989;124(1):356–62.

    Article  CAS  PubMed  Google Scholar 

  20. Magro G, Perissinotto D, Schiappacassi M, Goletz S, Otto A, Muller EC, et al. Proteomic and postproteomic characterization of keratan sulfate-glycanated isoforms of thyroglobulin and transferrin uniquely elaborated by papillary thyroid carcinomas. Am J Pathol. 2003;163:183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emoto N, Kunii YK, Ashizawa M, Oikawa S, Shimizu K, Shimonaka M, et al. Reduced sulfation of chondroitin sulfate in thyroglobulin derived from human papillary thyroid carcinomas. Cancer Sci. 2007;98:1577–81.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider AB, Ikekubo K, Kuma K. Iodine content of serum thyroglobulin in normal individuals and patients with thyroid tumors. J Clin Endocrinol Metab. 1983;57:1251–6.

    Article  CAS  PubMed  Google Scholar 

  23. Saboori AM, Rose NR, Bresler HS, Vladut-Talor M, Burek CL. Iodination of human thyroglobulin (Tg) alters its immunoreactivity. 1. Iodination alters muliple epitopes of human Tg. Clin Exp Immunol. 1998;113:297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerard AC, Daumerie C, Mestdagh C, Gohy S, De Burbure C, Costagliola S, et al. Correlation between the loss of thyroglobulin iodination and the expression of thyroid-specific proteins involved in iodine metabolism in thyroid carcinomas. J Clin Endocrinol Metab. 2003;88:4977–83.

    Article  CAS  PubMed  Google Scholar 

  25. McLachlan SM, Rapoport B. Why measure thyroglobulin autoantibodies rather than thyroid peroxidase autoantibodies. Thyroid. 2004;14:510–20.

    Article  CAS  PubMed  Google Scholar 

  26. Prentice L, Kiso Y, Fukuma N, Horimoto M, Petersen V, Grennan F, et al. Monoclonal thyroglobulin autoantibodies: variable region analysis and epitope recognition. J Clin Endocrinol Metab. 1995;80:977–86.

    CAS  PubMed  Google Scholar 

  27. Kohno Y, Tarutani O, Sakata S, Nakajima H. Monoclonal antibodies to thyroglobulin elucidate differences in protein structure of thyroglobulin in healthy individuals and those with papillary adenocarcinoma. J Clin Endocrinol Metab. 1985;61:343–50.

    Article  CAS  PubMed  Google Scholar 

  28. de Micco C, Ruf J, Carayon P, Chrestian MA, Henry JF, Toga M. Immunohistochemical study of thyroglobulin in thyroid carcinomas with monoclonal antibodies. Cancer. 1987;59:471–6.

    Article  PubMed  Google Scholar 

  29. Kim PS, Dunn AD, Dunn JT. Altered immunoreactivity of thyroglobulin in thyroid disease. J Clin Endocrinol Metab. 1988;67:161–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hufner M, Pfahl H, Bethauser H, Heilig B, Georgi P. Comparative plasma thyroglobulin measurements with three non-cross-reactive monoclonal antibodies in metastatic thyroid cancer patients. Acta Endocrinol. 1988;118:528–32.

    Article  CAS  Google Scholar 

  31. Schulz R, Bethauser H, Stempka L, Heilig B, Moll A, Hufner M. Evidence for immunological differences between circulating and tissue-derived thyroglobulin in men. Eur J Clin Investig. 1989;19:459–63.

    Article  CAS  Google Scholar 

  32. Saboori AM, Rose NR, Kuppers RC, Butscher WG, Bresler HS, Burek CL. Immunoreactivity of multiple molecular forms of human thyroglobulin. Clin Immunol Immunopathol. 1994;72(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rose NR, Saboori AM, Rasooly L, Burek CL. The role of iodine in autoimmune thyroiditis. Crit Rev Immunol. 1997;17:511–7.

    CAS  PubMed  Google Scholar 

  34. Spencer CA, Bergoglio LM, Kazarosyan M, Fatemi S, LoPresti JS. Clinical impact of thyroglobulin (Tg) and Tg autoantibody method differences on the management of patients with differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2005;90(10):5566–75.

    Article  CAS  PubMed  Google Scholar 

  35. Saboori AM, Burek CL, Rose NR, Bresler HS, Talor M, Kuppers RC. Tryptic peptides of human thyroglobulin: I. Immunoreactivity with murine monoclonal antibodies. Clin Exp Immunol. 1994;98(3):454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saboori AM, Caturegli P, Rose NR, Mariotti S, Pinchera A, Burek CL. Tryptic peptides of human thyroglobulin: II. Immunoreactivity with sera from patients with thyroid diseases. Clin Exp Immunol. 1994;98(3):459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clarke NJ, Zhang Y, Reitz RE. A novel mass spectrometry-based assay for the accurate measurement of thyroglobulin from patient samples containing antithyroglobulin autoantibodies. J Investig Med. 2012;60(8):1157–63.

    Article  CAS  PubMed  Google Scholar 

  38. Kushnir MM, Rockwood AL, Roberts WL, Abraham D, Hoofnagle AN, Meikle AW. Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin Chem. 2013;59(6):982–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoofnagle AN, Roth MY. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J Clin Endocrinol Metab. 2013;98(4):1343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fenouillet E, Fayet G, Hovsepian S, Bahraoui EM, Ronin C. Immunochemical evidence for a role of complex carbohydrate chains in thyroglobulin antigenicity. J Biol Chem. 1986;261(32):15153–8.

    Article  CAS  PubMed  Google Scholar 

  41. Schlumberger M, Hitzel A, Toubert ME, Corone C, Troalen F, Schlageter MH, et al. Comparison of seven serum thyroglobulin assays in the follow-up of papillary and follicular thyroid cancer patients. J Clin Endocrinol Metab. 2007;92(7):2487–95.

    Article  CAS  PubMed  Google Scholar 

  42. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods - strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27:701–12.

    Article  CAS  PubMed  Google Scholar 

  43. Tatumi K, Suzuki Y, Sinohara H. Clearance of circulating desialylated thyroglobulins in the rat. Biochim Biophys Acta. 1979;583(4):504–11.

    Article  CAS  PubMed  Google Scholar 

  44. Brix K, Wirtz R, Herzog V. Paracrine interaction between hepatocytes and macrophages after extrathyroidal proteolysis of thyroglobulin. Hepatology. 1997;26:1232–40.

    CAS  PubMed  Google Scholar 

  45. Whitley RJ, Ain KB. Thyroglobulin: a specific serum marker for the management of thyroid carcinoma. Clin Lab Med. 2004;24(1):29–47.

    Article  PubMed  Google Scholar 

  46. Sellitti DF, Suzuki K. Intrinsic regulation of thyroid function by thyroglobulin. Thyroid. 2014;24(4):625–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feldt-Rasmussen U, Petersen PH, Nielsen H, Date J. Thyroglobulin of varying molecular sizes with different disappearence rates in plasma following subtotal thyroidectomy. Clin Endocrinol. 1978;9:205–14.

    Article  CAS  Google Scholar 

  48. Hocevar M, Auersperg M, Stanovnik L. The dynamics of serum thyroglobulin elimination from the body after thyroid surgery. Eur J Surg Oncol. 1997;23:208–10.

    Article  CAS  PubMed  Google Scholar 

  49. Feldt-Rasmussen U. Serum thyroglobulin and thyroglobulin autoantibodies in thyroid disease. Allergy. 1983;38:369–87.

    Article  CAS  PubMed  Google Scholar 

  50. Jeevanram RK, Shah DH, Sharma SM, Ganatra RD. Disappearance rate of endogenously radioiodinated thyroglobulin and thyroxine after radioiodine treatment. Cancer. 1982;49:2281–4.

    Article  CAS  PubMed  Google Scholar 

  51. Ikekubo K, Pervos R, Schneider AB. Clearance of normal and tumor-related thyroglobulin from the circulation of rats: role of the terminal sialic acid residues. Metabolism. 1980;29:673–81.

    Article  CAS  PubMed  Google Scholar 

  52. Morell AG, Gregoriadis G, Scheinberg IH. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246:1461–7.

    Article  CAS  PubMed  Google Scholar 

  53. Sinadinovic J, Cvejic D, Savin S, Jancic-Zuguricas M, Micic JV. Altered terminal glycosylation of thyroglobulin in papillary thyroid carcinoma. Exp Clin Endocrinol. 1992;100:124–8.

    Article  CAS  PubMed  Google Scholar 

  54. Bastiani P, Papandreou J, Blanck O, Fenouillet E, Thibault V, Miquelis R. On the relationship between completion of N-acetllactosamine oligosaccharide units and iodine content of thyroglobulin; a reinvestigation. Endocrinology. 1995;136:4204–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hocevar M, Auersperg M. Role of serum thyroglobulin in the pre-operative evaluation of follicular thyroid tumours. Eur J Surg Oncol. 1998;24:553–7.

    Article  CAS  PubMed  Google Scholar 

  56. Ericsson UB, Tegler L, Lennquist S, Christensen SB, Ståhl E, Thorell JI. Serum thyroglobulin in differentiated thyroid carcinoma. Acta Chir Scand. 1984;150:367–75.

    CAS  PubMed  Google Scholar 

  57. Weigle WO, High GJ. The behaviour of autologous thyroglobulin in the circulation of rabbits immunized with either heterologous or altered homologous thyroglobulin. J Immunol. 1967;98:1105–14.

    CAS  PubMed  Google Scholar 

  58. Igawa T, Haraya K, Hattori K. Sweeping antibody as a novel therapeutic antibody modality capable of eliminating soluble antigens from circulation. Immunol Rev. 2016;270(1):132–51.

    Article  CAS  PubMed  Google Scholar 

  59. Spencer C, Petrovic I, Fatemi S, LoPresti J. Serum thyroglobulin (Tg) monitoring of patients with differentiated thyroid cancer using sensitive (second-generation) immunometric assays can be disrupted by false-negative and false-positive serum thyroglobulin autoantibody misclassifications. J Clin Endocrinol Metab. 2014;99(12):4589–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pacini F, Mariotti S, Formica N, Elisei R. Thyroid autoantibodies in thyroid cancer: incidence and relationship with tumor outcome. Acta Endocrinol. 1988;119:373–80.

    Article  CAS  Google Scholar 

  61. Rubello D, Casara D, Girelli ME, Piccolo M, Busnardo B. Clinical meaning of circulating antithyroglobulin antibodies in differentiated thyroid cancer: a prospective study. J Nucl Med. 1992;33:1478–80.

    CAS  PubMed  Google Scholar 

  62. Spencer CA, Takeuchi M, Kazarosyan M, Wang CC, Guttler RB, Singer PA, et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998;83(4):1121–7.

    CAS  PubMed  Google Scholar 

  63. Chung JK, Park YJ, Kim TY, So Y, Kim SK, Park DJ, et al. Clinical significance of elevated level of serum antithyroglobulin antibody in patients with differentiated thyroid cancer after thyroid ablation. Clin Endocrinol. 2002;57:215–21.

    Article  Google Scholar 

  64. Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139:346–51.

    Article  CAS  PubMed  Google Scholar 

  65. Baloch Z, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, Henry JF, et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13(1):3–126.

    Article  PubMed  Google Scholar 

  66. Küçük ON, Aras G, Kulak HA, Ibiş E. Clinical importance of anti-thyroglobulin auto-antibodies in patients with differentiated thyroid carcinoma: comparison with 99mTc-MIBI scans. Nucl Med Commun. 2006;27:873–6.

    Article  PubMed  CAS  Google Scholar 

  67. Thomas D, Liakos V, Vassiliou E, Hatzimarkou F, Tsatsoulis A, Kaldrimides P. Possible reasons for different pattern disappearance of thyroglobulin and thyroid peroxidase autoantibodies in patients with differentiated thyroid carcinoma following total thyroidectomy and iodine-131 ablation. J Endocrinol Investig. 2007;30:173–80.

    Article  CAS  Google Scholar 

  68. Kim WG, Yoon JH, Kim WB, Kim TY, Kim EY, Kim JM, et al. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2008;93(12):4683–9.

    Article  CAS  PubMed  Google Scholar 

  69. Feldt-Rasmussen U, Rasmussen AK. Autoimmunity in differentiated thyroid cancer: significance and related clinical problems. Hormones. 2010;9:109–17.

    Article  PubMed  Google Scholar 

  70. Spencer CA. Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96(12):3615–27.

    Article  CAS  PubMed  Google Scholar 

  71. Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1211–25.

    Article  PubMed  Google Scholar 

  72. Hsieh CJ, Wang PW. Sequential changes of serum antithyroglobulin antibody levels are a good predictor of disease activity in thyroglobulin-negative patients with papillary thyroid carcinoma. Thyroid. 2014;24(3):488–93.

    Article  CAS  PubMed  Google Scholar 

  73. Feldt-Rasmussen U, Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, et al. Thyroglobulin autoantibodies as surrogate biomarkers in the management of patients with differentiated thyroid carcinoma. Curr Med Chem. 2014;21(32):3687–92.

    Article  CAS  PubMed  Google Scholar 

  74. Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosario PW, Carvalho M, Mourao GF, Calsolari MR. Comparison of antithyroglobulin antibody concentrations before and after ablation with 131I as a predictor of structural disease in differentiated thyroid carcinoma patients with undetectable basal thyroglobulin and negative neck ultrasonography. Thyroid. 2016;26(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  76. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Giovanella L, Feldt-Rasmussen U, Verburg FA, Grebe SK, Plebani M, Clark PM. Thyroglobulin measurement by highly sensitive assays: focus on laboratory challenges. Clin Chem Lab Med. 2015;53(9):1301–14.

    Article  CAS  PubMed  Google Scholar 

  78. Rosario PW, Mourao GF, Calsolari MR. Low postoperative nonstimulated thyroglobulin as a criterion for the indication of low radioiodine activity in patients with papillary thyroid cancer of intermediate risk ‘with higher risk features’. Clin Endocrinol. 2016;85(3):453–8.

    Article  CAS  Google Scholar 

  79. Spencer CA, Wang CC. Thyroglobulin measurement. Techniques, clinical benefits, and pitfalls. Endocrinol Metab Clin N Am. 1995;24(4):841–63.

    Article  CAS  Google Scholar 

  80. Spencer CA, Takeuchi M, Kazarosyan M. Current status and performance goals for serum thyroglobulin assays. Clin Chem. 1996;42:164–73.

    Article  CAS  PubMed  Google Scholar 

  81. Algeciras-Schimnich A, Bruns DE, Boyd JC, Bryant SC, La Fortune KA, Grebe SK. Failure of current laboratory protocols to detect lot-to-lot reagent differences: findings and possible solutions. Clin Chem. 2013;59:1187–94.

    Article  CAS  PubMed  Google Scholar 

  82. Spencer CA, Wang CC. Thyroglobulin measurement: techniques, clinical benefits and pitfalls. Endocrinol Metab Clin N Am. 1995;24:841–63.

    Article  CAS  Google Scholar 

  83. Ross HA, Netea-Maier RT, Schakenraad E, Bravenboer B, Hermus AR, Sweep FC. Assay bias may invalidate decision limits and affect comparability of serum thyroglobulin assay methods: an approach to reduce interpretation differences. Clin Chim Acta. 2008;394:104–9.

    Article  CAS  PubMed  Google Scholar 

  84. Zucchelli G, Iervasi A, Ferdeghini M, Iervasi G. Serum thyroglobulin measurement in the follow-up of patients treated for differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:482–9.

    CAS  PubMed  Google Scholar 

  85. Reix N, Massart C, Gasser F, Heurtault B, Agin A. Should functional sensitivity of a new thyroid stimulating hormone immunoassay be monitored routinely? The ADVIA Centaur TSH3-UL assay experience. Clin Biochem. 2012;45:1260–2.

    Article  CAS  PubMed  Google Scholar 

  86. Nicoloff JSC. Use and misuse of the sensitive thyrotropin assays. J Clin Endocrinol Metab. 1990;71:553–8.

    Article  CAS  PubMed  Google Scholar 

  87. Spencer CA, LoPresti JS, Patel A, Guttler RB, Eigen A, Shen D, et al. Applications of a new chemiluninometric thyrotropin assay to subnormal measurement. J Clin Endocrinol Metab. 1990;70:453–60.

    Article  CAS  PubMed  Google Scholar 

  88. Van Herle AJ, Uller RP, Matthews NL, Brown J. Radioimmunoassay for measurement of thyroglobulin in human serum. J Clin Invest. 1973;52:1320–7.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Spencer CA, Bergoglio LM, Kazarosyan M, Fatemi S, Lopresti JS. Clinical impact of thyroglobulin (Tg) and Tg autoantibody method differences on the management of patients with differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2005;90(10):5566–75.

    Article  CAS  PubMed  Google Scholar 

  90. Giovanella L, Clark P, Chiovato L, Duntas LH, Elisei R, Feldt-Rasmussen U, et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171:R33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Haugen BR, Ladenson PW, Cooper DS, Pacini F, Reiners C, Luster M, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84:3877–85.

    CAS  PubMed  Google Scholar 

  92. Pacini F, Castagna MG. Diagnostic and therapeutic use of recombinant human TSH (rhTSH) in differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2008;22:1009–21.

    Article  CAS  PubMed  Google Scholar 

  93. Spencer CA, Fatemi S, Singer P, Nicoloff JT, LoPresti JS. Serum basal thyroglobulin measured by a 2nd generation assay correlates with the recombinant human TSH-Stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid. 2010;20:587–95.

    Article  CAS  PubMed  Google Scholar 

  94. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. The American Thyroid Association Guidelines Taskforce. Thyroid. 2006;16:109–42.

    Article  PubMed  Google Scholar 

  95. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.

    Article  CAS  PubMed  Google Scholar 

  96. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–24.

    Article  PubMed  Google Scholar 

  97. Zophel K, Wunderlich G, Smith BR. Serum thyroglobulin measurements with a high sensitivity enzyme-linked immunosorbent assay: is there a clinical benefit in patients with differentiated thyroid carcinoma? Thyroid. 2003;13:861–5.

    Article  PubMed  CAS  Google Scholar 

  98. Kloos RT, Mazzaferri EL. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metab. 2005;90:5047–57.

    Article  CAS  PubMed  Google Scholar 

  99. Rosario PW, Borges MA, Fagundes TA, Franco AC, Purisch S. Is stimulation of thyroglobulin (Tg) useful in low-risk patients with thyroid carcinoma and undetectable Tg on thyroxin and negative neck ultrasound? Clin Endocrinol. 2005;62:121–5.

    Article  CAS  Google Scholar 

  100. Iervasi A, Iervasi G, Carpi A, Zucchelli GC. Serum thyroglobulin measurement: clinical background and main methodological aspects with clinical impact. Biomed Pharmacother. 2006;60:414–24.

    Article  CAS  PubMed  Google Scholar 

  101. Iervasi A, Iervasi G, Ferdeghini M, Solimeo C, Bottoni A, Rossi L, et al. Clinical relevance of highly sensitive Tg assay in monitoring patients treated for differentiated thyroid cancer. Clin Endocrinol. 2007;67(6):434–41.

    Article  CAS  Google Scholar 

  102. Smallridge RC, Meek SE, Morgan MA, Gates GS, Fox TP, Grebe S, et al. Monitoring thyroglobulin in a sensitive immunoassay has comparable sensitivity to recombinant human TSH-stimulated thyroglobulin in follow-up of thyroid cancer patients. J Clin Endocrinol Metab. 2007;92:82–7.

    Article  CAS  PubMed  Google Scholar 

  103. Mazzaferri EL. Will highly sensitive thyroglobulin assays change the management of thyroid cancer? Clin Endocrinol. 2007;67:321–3.

    Article  CAS  Google Scholar 

  104. Persoon AC, Jager PL, Sluiter WJ, Plukker JT, Wolffenbuttel BH, Links TP. A sensitive Tg assay or rhTSH stimulated Tg: what’s the best in the long-term follow-up of patients with differentiated thyroid carcinoma. PLoS ONE. 2007;2:e816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Giovanella L. Highly sensitive thyroglobulin measurements in differentiated thyroid carcinoma management. Clin Chem Lab Med. 2008;46(8):1067–73.

    Article  CAS  PubMed  Google Scholar 

  106. Spencer CA, Lopresti JS. Measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008;4:223–33.

    Article  CAS  PubMed  Google Scholar 

  107. Malandrino P, Latina A, Marescalco S, Spadaro A, Regalbuto C, Fulco RA, et al. Risk-adapted management of differentiated thyroid cancer assessed by a sensitive measurement of basal serum thyroglobulin. J Clin Endocrinol Metab. 2011;96:1703–9.

    Article  CAS  PubMed  Google Scholar 

  108. Chindris AM, Diehl NN, Crook JE, Fatourechi V, Smallridge RC. Undetectable sensitive serum thyroglobulin (<0.1 ng/ml) in 163 patients with follicular cell-derived thyroid cancer: results of rhTSH stimulation and neck ultrasonography and long-term biochemical and clinical follow-up. J Clin Endocrinol Metab. 2012;97(8):2714–23.

    Article  CAS  PubMed  Google Scholar 

  109. Trimboli P, La Torre D, Ceriani L, Condorelli E, Laurenti O, Romanelli F, et al. High sensitive thyroglobulin assay on thyroxine therapy: can it avoid stimulation test in low and high risk differentiated thyroid carcinoma patients? Horm Metab Res. 2013;45(9):664–8.

    Article  CAS  PubMed  Google Scholar 

  110. Giovanella L, Treglia G, Sadeghi R, Trimboli P, Ceriani L, Verburg FA. Unstimulated high-sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab. 2014;99:440–7.

    Article  CAS  PubMed  Google Scholar 

  111. Giovanella L, Clark PM, Chiovato L, Duntas L, Elisei R, Feldt-Rasmussen U, et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171(2):R33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Feldt-Rasmussen U, Profilis C, Colinet E, Black E, Bornet H, Bourdoux P, et al. Human thyroglobulin reference material (CRM 457) 1st part: assessment of homogeneity, stability and immunoreactivity. Ann Biol Clin. 1996;54:337–42.

    CAS  Google Scholar 

  113. Feldt-Rasmussen U, Profilis C, Colinet E, Black E, Bornet H, Bourdoux P, et al. Human thyroglobulin reference material (CRM 457) 2nd part: physicochemical characterization and certification. Ann Biol Clin. 1996;54:343–8.

    CAS  Google Scholar 

  114. Netzel BC, Grebe SK, Carranza Leon BG, Castro MR, Clark PM, Hoofnagle AN, et al. Thyroglobulin (Tg) testing revisited: Tg Assays, TgAb assays, and correlation of results with clinical outcomes. J Clin Endocrinol Metab. 2015;100(8):E1074–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kim M, Jeon MJ, Kim WG, Lee JJ, Ryu JS, Cho EJ, et al. Comparison of thyroglobulin measurements using three different immunoassay kits: a BRAMHS Tg-Plus RIA Kit, a BRAMHS hTg sensitive kryptor kit, and a Beckman Coulter ACCESS immunoassay kit. Endocrinol Metab. 2016;31:462–8.

    Article  CAS  Google Scholar 

  116. Jensen E, Petersen PH, Blaabjerg O, Hegedüs L. Biological variation of thyroid autoantibodies and thyroglobulin. Clin Chem Lab Med. 2007;45:1058–64.

    Article  CAS  PubMed  Google Scholar 

  117. Feldt-Rasmussen U, Petersen PH, Blaabjerg O, Horder M. Long-term variability in serum thyroglobulin and thyroid related hormones in healthy subjects. Acta Endocrinol. 1980;95:328–34.

    Article  CAS  Google Scholar 

  118. Heilig B, Hufner M, Dorken B, Schmidt-Gayk H. Increased heterogeneity of serum thyroglobulin in thyroid cancer patients as determined by monoclonal antibodies. Klin Wochenschr. 1986;64:776–80.

    Article  CAS  PubMed  Google Scholar 

  119. Ross HA, Menheere PP, Thomas CM, Mudde AH, Kouwenberg M, Wolffenbuttel BH. Interference from heterophilic antibodies in seven current TSH assays. Ann Clin Biochem. 2008;45:616–8.

    Article  CAS  PubMed  Google Scholar 

  120. Clark P, Franklyn J. Can we interpret serum thyroglobulin results? Ann Clin Biochem. 2012;49:313–22.

    Article  CAS  PubMed  Google Scholar 

  121. Fenouillet E, Fayet G, Hovsepian S, Bahraoui EM, Ronin C. Immunochemical evidence for a role of complex carbohydrate chains in thyroglobulin antigenicity. J Biol Chem. 1986;261:15153–8.

    Article  CAS  PubMed  Google Scholar 

  122. Cubero JM, Rodríguez-Espinosa J, Gelpi C, Estorch M, Corcoy R. Thyroglobulin autoantibody levels below the cut-off for positivity can interfere with thyroglobulin measurement. Thyroid. 2003;13:659–61.

    Article  CAS  PubMed  Google Scholar 

  123. Spencer C, Petrovic I, Fatemi S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96(5):1283–91.

    Article  CAS  PubMed  Google Scholar 

  124. Rotmensch S, Cole LA. False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations. Lancet. 2000;355:712–5.

    Article  CAS  PubMed  Google Scholar 

  125. Jones AM, Honour JW. Unusual results from immunoassays and the role of the clinical endocrinologist. Clin Endocrinol. 2006;64(3):234–44.

    Article  CAS  Google Scholar 

  126. Ballieux BE, Weijl NI, Gelderblom H, van Pelt J, Osanto S. False-positive serum human chorionic gonadotropin (HCG) in a male patient with a malignant germ cell tumor of the testis: a case report and review of the literature. Oncologist. 2008;13(11):1149–54.

    Article  CAS  PubMed  Google Scholar 

  127. Henry N, Sebe P, Cussenot O. Inappropriate treatment of prostate cancer caused by heterophilic antibody interference. Nat Clin Pract Urol. 2009;6(3):164–7.

    PubMed  Google Scholar 

  128. Georges A, Charrie A, Raynaud S, Lombard C, Corcuff JB. Thyroxin overdose due to rheumatoid factor interferences in thyroid-stimulating hormone assays. Clin Chem Lab Med. 2011;49(5):873–5.

    Article  CAS  PubMed  Google Scholar 

  129. Bjerner J, Bolstad N, Piehler A. Belief is only half the truth--or why screening for heterophilic antibody interference in certain assays makes double sense. Ann Clin Biochem. 2012;49(Pt 4):381–6.

    Article  PubMed  Google Scholar 

  130. Pishdad GR, Pishdad P, Pishdad R. The effect of glucocorticoid therapy on a falsely raised thyrotropin due to heterophilic antibodies. Thyroid. 2013;23(12):1657–8.

    Article  PubMed  Google Scholar 

  131. Marks V. False-positive immunoassay results: a multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries. Clin Chem. 2002;48:2008–16.

    Article  CAS  PubMed  Google Scholar 

  132. Ellis MJ, Livesey JH. Techniques for identifying heterophile antibody interference are assay specific: study of seven analytes on two automated immunoassay analyzers. Clin Chem. 2005;51:639–41.

    Article  CAS  PubMed  Google Scholar 

  133. Lewandowski KC, Dabrowska K, Lewinski A. Case report: When measured free T4 and free T3 may be misleading. Interference with free thyroid hormones measurements on Roche(R) and Siemens(R) platforms. Thyroid Res. 2012;5(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab. 2013;27(5):647–61.

    Article  CAS  PubMed  Google Scholar 

  135. Emerson JF, Ngo G, Emerson SS. Screening for interference in immunoassays. Clin Chem. 2003;49(7):1163–9.

    Article  PubMed  Google Scholar 

  136. Massart C, Corcuff JB, Bordenave L. False-positive results corrected by the use of heterophilic antibody-blocking reagent in thyroglobulin immunoassays. Clin Chim Acta. 2008;388:211–3.

    Article  CAS  PubMed  Google Scholar 

  137. Koshida S, Asanuma K, Kuribayashi K, Goto M, Tsuji N, Kobayashi D, et al. Prevalence of human anti-mouse antibodies (HAMAs) in routine examinations. Clin Chim Acta. 2010;411:391–4.

    Article  CAS  PubMed  Google Scholar 

  138. Ismail AA. On detecting interference from endogenous antibodies in immunoassays by doubling dilutions test. Clin Chem Lab Med. 2007;45(7):851–4.

    Article  CAS  PubMed  Google Scholar 

  139. Gulbahar O, Konca Degertekin C, Akturk M, Yalcin MM, Kalan I, Atikeler GF, et al. A case with immunoassay interferences in the measurement of multiple hormones. J Clin Endocrinol Metab. 2015;100(6):2147–53.

    Article  CAS  PubMed  Google Scholar 

  140. Klee GG. Interferences in hormone immunoassays. Clin Lab Med. 2004;24(1):1–18.

    Article  PubMed  Google Scholar 

  141. Sturgeon CM, Viljoen A. Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem. 2011;48:418–32.

    Article  CAS  PubMed  Google Scholar 

  142. Kricka LJ. Human anti-animal antibody interference in immunological assays. Clin Chem. 1999;45:942–56.

    Article  CAS  PubMed  Google Scholar 

  143. Levinson SS, Miller JJ. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin Chim Acta. 2002;325:1–15.

    Article  CAS  PubMed  Google Scholar 

  144. Covinsky M, Laterza O, Pfeifer JD, Farkas-Szallasi T, Scott MG. Lamda antibody to Esherichia coli produces false-positive results in multiple immunometric assays. Clin Chem. 2000;46:1157–61.

    Article  CAS  PubMed  Google Scholar 

  145. Bjerner J, Olsen KH, Bormer OP, Nustad K. Human heterophilic antibodies display specificity for murine IgG subclasses. Clin Biochem. 2005;38(5):465–72.

    Article  CAS  PubMed  Google Scholar 

  146. Preissner CM, Dodge LA, O’Kane DJ, Singh RJ, Grebe SK. Prevalence of heterophilic antibody interference in eight automated tumor marker immunoassays. Clin Chem. 2005;51:208–10.

    Article  CAS  PubMed  Google Scholar 

  147. Despres N, Grant AM. Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem. 1998;44:440–54.

    Article  CAS  PubMed  Google Scholar 

  148. Astarita G, Gutierrez S, Kogovsek N, Mormandi E, Otero P, Calabrese C, et al. False positive in the measurement of thyroglobulin induced by rheumatoid factor. Clin Chim Acta. 2015;447:43–6.

    Article  CAS  PubMed  Google Scholar 

  149. Preissner CM, O’Kane DJ, Singh RJ, Morris JC, Grebe SK. Phantoms in the assay tube: heterophile antibody interferences in serum thyroglobulin assays. J Clin Endocrinol Metab. 2003;88(7):3069–74.

    Article  CAS  PubMed  Google Scholar 

  150. Giovanella L, Ghelfo A. Undetectable serum thyroglobulin due to negative interference of heterophile antibodies in relapsing thyroid carcinoma. Clin Chem. 2007;53:1871–2.

    Article  CAS  PubMed  Google Scholar 

  151. Giovanella L, Keller F, Ceriani L, Tozzoli R. Heterophile antibodies may falsely increase or decrease thyroglobulin measurement in patients with differentiated thyroid carcinoma. Clin Chem Lab Med. 2009;47:952–4.

    CAS  PubMed  Google Scholar 

  152. Verburg FA, Wäschle K, Reiners C, Giovanella L, Lentjes EG. Heterophile antibodies rarely influence the measurement of thyroglobulin and thyroglobulin antibodies in differentiated thyroid cancer patients. Horm Metab Res. 2010;42:736–9.

    Article  CAS  PubMed  Google Scholar 

  153. Netzel BC, Grebe SK, Algeciras-Schimnich A. Usefulness of a thyroglobulin liquid chromatography-tandem mass spectrometry assay for evaluation of suspected heterophile interference. Clin Chem. 2014;60:1016–8.

    Article  CAS  PubMed  Google Scholar 

  154. Petrovic I, Mandel S, Fatemi S, LoPresti J, Spencer C. Heterophile antibodies (HAb/HAMA) interfere with automated TgAb IMA tests. Thyroid. 2016;26(S1):A120.

    Google Scholar 

  155. Weber TH, Käpyaho KI, Tanner P. Endogenous interference in immunoassays in clinical chemistry. A review. Scand J Clin Lab Invest. 1990;201:77–82.

    Article  CAS  Google Scholar 

  156. Bjerner J, Nustad K, Norum LF, Olsen KH, Børmer OP. Immunometric assay interference: incidence and prevention. Clin Chem. 2002;48:613–21.

    Article  CAS  PubMed  Google Scholar 

  157. Ghosh S, Howlett M, Boag D, Malik I, Collier A. Interference in free thyroxine immunoassay. Eur J Intern Med. 2008;19:221–2.

    Article  CAS  PubMed  Google Scholar 

  158. Nakano K, Yasuda K, Shibuya H, Moriyama T, Kahata K, Shimizu C. Transient human anti-mouse antibody generated with immune enhancement in a carbohydrate antigen 19-9 immunoassay after surgical resection of recurrent cancer. Ann Clin Biochem. 2016;53(Pt 4):511–5.

    Article  CAS  PubMed  Google Scholar 

  159. Rulander NJ, Cardamone D, Senior M, Snyder PJ, Master SR. Interference from anti-streptavidin antibody. Arch Pathol Lab Med. 2013;137(8):1141–6.

    Article  CAS  PubMed  Google Scholar 

  160. Vos MJ, Rondeel JM, Mijnhout GS, Endert E. Immunoassay interference caused by heterophilic antibodies interacting with biotin. Clin Chem Lab Med. 2016;55:e122–6.

    Article  CAS  Google Scholar 

  161. Kwok JS, Chan IH, Chan MH. Biotin interference on TSH and free thyroid hormone measurement. Pathology. 2012;44(3):278–80.

    Article  CAS  PubMed  Google Scholar 

  162. Wijeratne NG, Doery JC, Lu ZX. Positive and negative interference in immunoassays following biotin ingestion: a pharmacokinetic study. Pathology. 2012;44(7):674–5.

    Article  PubMed  Google Scholar 

  163. Elston MS, Sehgal S, Du Toit S, Yarndley T, Conaglen JV. Factitious Graves’ disease due to biotin immunoassay interference-A case and review of the literature. J Clin Endocrinol Metab. 2016;101(9):3251–5.

    Article  CAS  PubMed  Google Scholar 

  164. Pedersen IB, Laurberg P. Biochemical hyperthyroidism in a newborn baby caused by assay interaction from biotin intake. Eur Thyroid J. 2016;5:212–5.

    Article  CAS  Google Scholar 

  165. Barbesino G. Misdiagnosis of Graves’ disease with apparent severe hyperthyroidism in a patient taking biotin megadoses. Thyroid. 2016;26(6):860–3.

    Article  CAS  PubMed  Google Scholar 

  166. Chun KY. Biotin interference in diagnostic tests. Clin Chem. 2017;63(2):619–20.

    Article  CAS  PubMed  Google Scholar 

  167. Spencer CA, Takeuchi M, Kazarosyan M, Wang CC, Guttler RB, Singer PA, et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1998;83:1121–7.

    CAS  PubMed  Google Scholar 

  168. Kumar A, Shah DH, Shrihari U, Dandekar SR, Vijayan U, Sharma SM. Significance of antithyroglobulin autoantibodies in differentiated thyroid carcinoma. Thyroid. 1994;4:199–202.

    Article  CAS  PubMed  Google Scholar 

  169. Gorges R, Maniecki M, Jentzen W, Sheu SN, Mann K, Bockisch A, et al. Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur J Endocrinol. 2005;153(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  170. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    Article  CAS  PubMed  Google Scholar 

  171. Latrofa F, Ricci D, Montanelli L, Rocchi R, Piaggi P, Sisti E, et al. Thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: comparison of different assays and evaluation of causes of discrepancies. J Clin Endocrinol Metab. 2012;97:3974–82.

    Article  CAS  PubMed  Google Scholar 

  172. Schaadt B, Feldt-Rasmussen U, Rasmussen B, Torring H, Foder B, Jorgensen K, et al. Assessment of the influence of thyroglobulin (Tg) autoantibodies and other interfering factors on the use of serum Tg as tumor marker in differentiated thyroid carcinoma. Thyroid. 1995;5:165–70.

    Article  CAS  PubMed  Google Scholar 

  173. Spencer CA. Recoveries cannot be used to authenticate thyroglobulin (Tg) measurements when sera contain Tg autoantibodies. Clin Chem. 1996;42(5):661–3.

    Article  CAS  PubMed  Google Scholar 

  174. Ericsson UB, Christensen SB, Thorell JI. A high prevalence of thyroglobulin autoantibodies in adults with and without thyroid disease as measured with a sensitive solid-phase immunosorbent radioassay. Clin Immunol Immunopathol. 1985;37:154–62.

    Article  CAS  PubMed  Google Scholar 

  175. Ruf J, Carayon P, Lissitzky S. Various expressions of a unique anti-human thyroglobulin antibody repertoire in normal state and autoimmune disease. Eur J Immunol. 1985;15:268–72.

    Article  CAS  PubMed  Google Scholar 

  176. Okosieme OE, Evans C, Moss L, Parkes AB, Premawardhana LD, Lazarus JH. Thyroglobulin antibodies in serum of patients with differentiated thyroid cancer: relationship between epitope specificities and thyroglobulin recovery. Clin Chem. 2005;51(4):729–34.

    Article  CAS  PubMed  Google Scholar 

  177. Latrofa F, Ricci D, Montanelli L, Piaggi P, Mazzi B, Bianchi F, et al. Thyroglobulin autoantibodies switch to immunoglobulin (Ig)G1 and IgG3 subclasses and preserve their restricted epitope pattern after 131I treatment for Graves’ hyperthyroidism: the activity of autoimmune disease influences subclass distribution but not epitope pattern of autoantibodies. Clin Exp Immunol. 2014;178(3):438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Spencer CA, Takeuchi M, Kazarosyan M. Current status and performance goals for serum thyroglobulin assays. Clin Chem. 1996;42(1):164–73.

    Article  CAS  PubMed  Google Scholar 

  179. Tozzoli R, Bizzaro N, Tonutti E, Pradella M, Manoni F, Vilalta D, et al. Immunoassay of anti-thyroid autoantibodies: high analytical variability in second generation methods. Clin Chem Lab Med. 2002;40:568–73.

    Article  CAS  PubMed  Google Scholar 

  180. Benvenga S, Burek CL, Talor M, Rose NR, Trimarchi F. Heterogeneity of the thyroglobulin epitopes associated with circulating thyroid hormone autoantibodies in hashimoto’s thyroiditis and non-autoimmune thyroid diseases. J Endocrinol Investig. 2002;25:977–82.

    Article  CAS  Google Scholar 

  181. Rosário PW, Maia FF, Fagundes TA, Vasconcelos FP, Cardoso LD, Purisch S. Antithyroglobulin antibodies in patients with differentiated thyroid carcinoma: methods of detection, interference with serum thyroglobulin measurement and clinical significance. Arq Bras Endocrinol Metabol. 2004;48:487–92.

    Article  PubMed  Google Scholar 

  182. Beever K, Bradbury J, Phillips D, McLachlan SM, Pegg C, Goral A, et al. Highly sensitive assays of autoantibodies to thyroglobulin and to thyroid peroxidase. Clin Chem. 1989;35:1949–54.

    Article  CAS  PubMed  Google Scholar 

  183. Feldt-Rasmussen U. Analytical and clinical performance goals for testing autoantibodies to thyroperoxidase, thyroglobulin and thyrotropin receptor. Clin Chem. 1996;42:160–3.

    Article  CAS  PubMed  Google Scholar 

  184. La’ulu SL, Slev PR, Roberts WL. Performance characteristics of 5 automated thyroglobulin autoantibody and thyroid peroxidase autoantibody assays. Clin Chim Acta. 2007;376:88–95.

    Article  PubMed  CAS  Google Scholar 

  185. Krahn J, Dembinski T. Thyroglobulin and anti-thyroglobulin assays in thyroid cancer monitoring. Clin Biochem. 2009;42:416–9.

    Article  CAS  PubMed  Google Scholar 

  186. Pickett AJ, Jones M, Evans C. Causes of discordance between thyroglobulin antibody assays. Ann Clin Biochem. 2012;49:463–7.

    Article  CAS  PubMed  Google Scholar 

  187. Taylor KP, Parkington D, Bradbury S, Simpson HL, Jefferies SJ, Halsall DJ. Concordance between thyroglobulin antibody assays. Ann Clin Biochem. 2011;48(Pt 4):367–9.

    Article  PubMed  Google Scholar 

  188. Ruf J, Henry M, DeMicco C, Carayon P. Characterization of monoclonal and autoimmune antibodies to thyroglobulin: application to clinical investigation. In: Hufner M, Reiners C, editors. Thyroglobulin and thyrolobulin antibodies in the follow-up of thyroid cancer and endemic goiter. Stuttgart: G Thieme; 1987. p. 21–30.

    Google Scholar 

  189. Spencer CA, Platler BW, Nicoloff JT. The effect of 125-I thyroglobulin tracer heterogeneity on serum Tg RIA measurement. Clin Chim Acta. 1985;153:105–15.

    Article  CAS  PubMed  Google Scholar 

  190. Spencer CA, Platler B, Guttler RB, Nicoloff JT. Heterogeneity of 125-I labelled thyroglobulin preparations. Clin Chim Acta. 1985;151:121–32.

    Article  CAS  PubMed  Google Scholar 

  191. Black EG, Hoffenberg R. Should one measure serum thyroglobulin in the presence of anti-thyroglobulin antibodies? Clin Endocrinol. 1983;19:597–601.

    Article  CAS  Google Scholar 

  192. Mariotti S, Barbesino G, Caturegli P, Marino M, Manetti L, Pacini F, et al. Assay of thyroglobulin in serum with thyroglobulin autoantibodies: an unobtainable goal? J Clin Endocrinol Metab. 1995;80:468–72.

    Article  CAS  PubMed  Google Scholar 

  193. Weightman DR, Mallick UK, Fenwick JD, Perros P. Discordant serum thyroglobulin results generated by two classes of assay in patients with thyroid carcinoma: correlation with clinical outcome after 3 years of follow-up. Cancer. 2003;98(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  194. Jahagirdar VR, Strouhal P, Holder G, Gama R, Singh BM. Thyrotoxicosis factitia masquerading as recurrent Graves’ disease: endogenous antibody immunoassay interference, a pitfall for the unwary. Ann Clin Biochem. 2008;45(Pt 3):325–7.

    Article  CAS  PubMed  Google Scholar 

  195. Schneider AB, Pervos R. Radioimmunoassay of human thyroglobulin: effect of antithyroglobulin autoantibodies. J Clin Endocrinol Metab. 1978;47:126–37.

    Article  CAS  PubMed  Google Scholar 

  196. Feldt-Rasmussen U, Rasmussen AK. Serum thyroglobulin (Tg) in presence of thyroglobulin autoantibodies (TgAb). Clinical and methodological relevance of the interaction between Tg and TgAb in vivo and in vitro. J Endocrinol Investig. 1985;8:571–6.

    Article  CAS  Google Scholar 

  197. Miles LEM, Hales CN. Labeled antibodies and immunological assay systems. Nature. 1968;219:186–9.

    Article  CAS  PubMed  Google Scholar 

  198. Bayer MF, Kriss JP. Immunoradiometric assay for serum thyroglobulin: semiquantitative measurement of thyroglobulin in antithyroglobulin-positive sera. J Clin Endocrinol Metab. 1979;49:557–64.

    Article  CAS  PubMed  Google Scholar 

  199. Latrofa F, Ricci D, Grasso L, Vitti P, Masserini L, Basolo F, et al. Characterization of thyroglobulin epitopes in patients with autoimmune and non-autoimmune thyroid diseases using recombinant human monoclonal thyroglobulin autoantibodies. J Clin Endocrinol Metab. 2008;93:591–6.

    Article  CAS  PubMed  Google Scholar 

  200. Rahmoun MN, Bendahmane I. Anti-thyroglobulin antibodies in differentiated thyroid carcinoma patients: study of the clinical and biological parameters. Ann Endocrinol (Paris). 2014;75(1):15–8.

    Article  Google Scholar 

  201. Marquet PY, Daver A, Sapin R, Bridgi B, Muratet JP, Hartmann DJ, et al. Highly sensitive immunoradiometric assay for serum thyroglobulin with minimal interference from autoantibodies. Clin Chem. 1996;42:258–62.

    Article  CAS  PubMed  Google Scholar 

  202. Grebe SKG. Diagnosis and management of thyroid carcinoma: a focus on serum thyroglobulin. Expert Rev Endocrinol Metab. 2009;4:25–43.

    Article  CAS  Google Scholar 

  203. Haapala AM, Soppi E, Morsky P, et al. Thyroid antibodies in association with thyroid malignancy II: qualitative properties of thyroglobulin antibodies. Scand J Clin Lab Invest. 1995;55:317–22.

    Article  CAS  PubMed  Google Scholar 

  204. Hoofnagle AN, Becker JO, Wener MH, Heinecke JW. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem. 2008;54(11):1796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Netzel BC, Grant RP, Hoofnagle AN, Rockwood AL, Shuford CM, Grebe SK. First steps toward harmonization of LC-MS/MS thyroglobulin assays. Clin Chem. 2016;62(1):297–9.

    Article  CAS  PubMed  Google Scholar 

  206. Hoofnagle AN, Wener MH. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods. 2009;347(1-2):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Grebe SK. Soluble thyroid tumor markers – old and new challenges and potential solutions. N Z J Med Lab Sci. 2013;67:76–87.

    Google Scholar 

  208. Jindal A, Khan U. Is thyroglobulin level by liquid chromatography tandem-mass spectrometry always reliable for follow-up of DTC after thyroidectomy: a report on two patients. Thyroid. 2016;26(9):1334–5.

    Article  PubMed  Google Scholar 

  209. Azmat U, Porter K, Senter L, Ringel MD, Nabhan F. Thyroglobulin liquid chromatography-tandem mass spectrometry has a low sensitivity for detecting structural disease in patients with antithyroglobulin antibodies. Thyroid. 2016;27(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  210. Petrovic I, Fatemi S, LoPresti J, Grebe SK, Algeciras-Schimnich A, Netzel BC, et al. SerumTg is frequently undetectable by mass spectrometry (Tg-MS) IN TgAb-positive differentiated thyroid cancer (DTC) patients with structural disease. Thyroid. 2015;25(S1):A251.

    Google Scholar 

  211. Crane MS, Strachan MW, Toft AD, Beckett GJ. Discordance in thyroglobulin measurements by radioimmunoassay and immunometric assay: a useful means of identifying thyroglobulin assay interference. Ann Clin Biochem. 2013;50:421–32.

    Article  PubMed  CAS  Google Scholar 

  212. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods - strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27(5):701–12.

    Article  CAS  PubMed  Google Scholar 

  213. Feldt-Rasmussen U, Petersen PH, Date J, Madsen CM. Sequential changes in serum thyroglobulin (Tg) and its autoantibodies (TgAb) following subtotal thyroidectomy of patients with preoperatively detectable TgAb. Clin Endocrinol. 1980;12:29–38.

    Article  CAS  Google Scholar 

  214. Fleck RA, Rapaport SI, Rao LV. Anti-prothrombin antibodies and the lupus anticoagulant. Blood. 1988;72(2):512–9.

    Article  CAS  PubMed  Google Scholar 

  215. van der Laken CJ, Voskuyl AE, Roos JC, Stigter van Walsum M, de Groot ER, Wolbink G, et al. Imaging and serum analysis of immune complex formation of radiolabelled infliximab and anti-infliximab in responders and non-responders to therapy for rheumatoid arthritis. Ann Rheum Dis. 2007;66(2):253–6.

    Article  PubMed  CAS  Google Scholar 

  216. Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med. 2015;373(12):1106–14.

    Article  CAS  PubMed  Google Scholar 

  217. Latrofa F, Ricci D, Sisti E, Piaggi P, Nencetti C, Marino M, et al. Significance of low levels of thyroglobulin autoantibodies associated with undetectable thyroglobulin after thyroidectomy for differentiated thyroid carcinoma. Thyroid. 2016;26(6):798–806.

    Article  CAS  PubMed  Google Scholar 

  218. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013;2013:965212.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer “epidemic”--screening and overdiagnosis. N Engl J Med. 2014;371(19):1765–7.

    Article  PubMed  Google Scholar 

  220. Oda H, Miyauchi A, Ito Y, Yoshioka K, Nakayama A, Sasai H, et al. Incidences of unfavorable events in the management of low-risk papillary microcarcinoma of the thyroid by active surveillance versus immediate surgery. Thyroid. 2016;26(1):150–5.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295:2164–7.

    Article  CAS  PubMed  Google Scholar 

  222. Zhu C, Zheng T, Kilfoy BA, Han X, Ma S, Ba Y, et al. A birth cohort analysis of the incidence of papillary thyroid cancer in the United States, 1973–2004. Thyroid. 2009;19:1061–6.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Udelsman R, Zhang Y. The epidemic of thyroid cancer in the United States: the role of endocrinologists and ultrasounds. Thyroid. 2014;24(3):472–9.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med. 2016;375(7):614–7.

    Article  PubMed  Google Scholar 

  225. Hundahl SA, Cady B, Cunningham MP, Mazzaferri E, McKee RF, Rosai J, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on cancer patient care evaluation study. Cancer. 2000;89(1):202–17.

    Article  CAS  PubMed  Google Scholar 

  226. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.

    Article  CAS  PubMed  Google Scholar 

  227. Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940-1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–85.

    Article  PubMed  Google Scholar 

  228. Pitoia F, Bueno F, Urciuoli C, Abelleira E, Cross G, Tuttle RM. Outcomes of patients with differentiated thyroid cancer risk-stratified according to the american thyroid association and latin american thyroid society risk of recurrence classification systems. Thyroid. 2013;23:1401–7.

    Article  PubMed  Google Scholar 

  229. Tuttle RM, Leboeuf R. Follow up approaches in thyroid cancer: a risk adapted paradigm. Endocrinol Metab Clin N Am. 2008;37:419–35.

    Article  Google Scholar 

  230. Pitoia F, Ward L, Wohllk N, Friguglietti C, Tomimori E, Gauna A, et al. Recommendations of the Latin American Thyroid Society on diagnosis and management of differentiated thyroid cancer. Arq Bras Endocrinol Metabol. 2009;53(7):884.

    Article  PubMed  Google Scholar 

  231. Ashcraft MW, Van Herle AJ. The comparative value of serum thyroglobulin measurements and iodine 131 total body scans in the follow-up of patients with treated differentiated thyroid cancer. Am J Med. 1981;71:806–14.

    Article  CAS  PubMed  Google Scholar 

  232. Pineda JD, Lee T, Ain K, Reynolds JC, Robbins J. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–92.

    CAS  PubMed  Google Scholar 

  233. Baudin E, Do Cao C, Cailleux AF, Leboulleux S, Travagli JP, Schlumberger M. Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J Clin Endocrinol Metab. 2003;88:1107–11.

    Article  CAS  PubMed  Google Scholar 

  234. Smallridge RC, Diehl N, Bernet V. Practice trends in patients with persistent detectable thyroglobulin and negative diagnostic radioiodine whole body scans: a survey of American Thyroid Association members. Thyroid. 2014;24(10):1501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lamartina L, Durante C, Filetti S, Cooper DS. Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J Clin Endocrinol Metab. 2015;100(5):1748–61.

    Article  CAS  PubMed  Google Scholar 

  236. Pacini F, Agate L, Elisei R, Capezzone M, Ceccarelli C, Lippi F, et al. Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab. 2001;86:4092–7.

    Article  CAS  PubMed  Google Scholar 

  237. Schaap J, Eustatia-Rutten CF, Stokkel M, Links TP, Diamant M, van der Velde EA, et al. Does radioiodine therapy have disadvantageous effects in non-iodine accumulating differentiated thyroid carcinoma. Clin Endocrinol. 2002;57:117–24.

    Article  CAS  Google Scholar 

  238. Valadão MM, Rosário PW, Borges MA, Costa GB, Rezende LL, Padrão EL, et al. Positive predictive value of detectable stimulated tg during the first year after therapy of thyroid cancer and the value of comparison with Tg-ablation and Tg measured after 24 months. Thyroid. 2006;16:1145–9.

    Article  PubMed  Google Scholar 

  239. Rosario P, Borges M, Reis J, Alves MF. Effect of suppressive therapy with levothyroxine on the reduction of serum thyroglobulin after total thyroidectomy. Thyroid. 2006;16:199–200.

    Article  PubMed  Google Scholar 

  240. Huang SH, Wang PW, Huang YE, Chou FF, Liu RT, Tung SC, et al. Sequential follow-up of serum thyroglobulin and whole body scan in thyroid cancer patients without initial metastasis. Thyroid. 2006;16:1273–8.

    Article  CAS  PubMed  Google Scholar 

  241. Giovanella L, Ceriani L, Suriano S, Ghelfo A, Maffioli M. Thyroglobulin measurement before rhTSH-aided (131)I ablation in detecting metastases from differentiated thyroid carcinoma. Clin Endocrinol. 2008;68:659–63.

    Article  CAS  Google Scholar 

  242. Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011;21(7):707–16.

    Article  PubMed  Google Scholar 

  243. Gibelli B, Tredici P, De Cicco C, Bodei L, Sandri MT, Renne G, et al. Preoperative determination of serum thyroglobulin to identify patients with differentiated thyroid cancer who may present recurrence without increased thyroglobulin. Acta Otorhinolaryngol Ital. 2005;25:94–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Giovanella L, Ceriani L, Ghelfo A, Maffioli M, Keller F. Preoperative undetectable serum thyroglobulin in differentiated thyroid carcinoma: incidence, causes and management strategy. Clin Endocrinol. 2007;67:547–51.

    CAS  Google Scholar 

  245. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92:2840–3.

    Article  CAS  PubMed  Google Scholar 

  246. Lazar V, Bidart JM, Caillou B, Mahe C, Lacroix L, Filetti S, et al. Expression of the Na+/I- symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999;84:3228–34.

    CAS  PubMed  Google Scholar 

  247. Gardner DF, Rothman J, Utiger RD. Serum thyroglobulin in normal subjects and patients with hyperthyroidism due to Graves’ disease: effects of T3, iodide, 131I and antithyroid drugs. Clin Endocrinol. 1979;11:585–94.

    Article  CAS  Google Scholar 

  248. Padovani RP, Robenshtok E, Brokhin M, Tuttle RM. Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 2012;22(8):778–83.

    Article  CAS  PubMed  Google Scholar 

  249. Durante C, Montesano T, Attard M, Torlontano M, Monzani F, Costante G, et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 2012;97:2748–53.

    Article  CAS  PubMed  Google Scholar 

  250. Hjiyiannakis P, Mundy J, Harmer C. Thyroglobulin antibodies in differentiated thyroid cancer. Clin Oncol. 1999;11:240–4.

    Article  CAS  Google Scholar 

  251. Ronga G, Filesi M, Ventroni G, Vestri AR, Signore A. Value of the first serum thyroglobulin level after total thyroidectomy for the diagnosis of metastases from differentiated thyroid carcinoma. Eur J Nucl Med. 1999;26:1448–52.

    Article  CAS  PubMed  Google Scholar 

  252. Lima N, Cavaliere E, Tomimori E, Knobel M, Medeieros-Neto G. Prognostic value of serial serum thyroglobulin determinations after total thyroidectomy for differentiated thyroid cancer. J Endocrinol Investig. 2002;25:110–5.

    Article  CAS  Google Scholar 

  253. Lin JD, Huang MJ, Hsu BR, Chao TC, Hsueh C, Liu FH, et al. Significance of postoperative serum thyroglobulin levels in patients with papillary and follicular thyroid carcinomas. J Surg Oncol. 2002;80:45–51.

    Article  CAS  PubMed  Google Scholar 

  254. Hall FT, Beasley NJ, Eski SJ, Witterick IJ, Walfish PG, Freeman JL. Predictive value of serum thyroglobulin after surgery for thyroid carcinoma. Laryngoscope. 2003;113:77–81.

    Article  PubMed  Google Scholar 

  255. Toubeau M, Touzery C, Arveux P, Chaplain G, Vaillant G, Berriolo A, et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after (131)I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med. 2004;45:988–94.

    CAS  PubMed  Google Scholar 

  256. Kim TY, Kim WB, Kim ES, Ryu JS, Yeo JS, Kim SC, et al. Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2005;90:1440–5.

    Article  CAS  PubMed  Google Scholar 

  257. Makarewicz J, Adamczewski Z, Knapska-Kucharska M, Lewiński A. Evaluation of the diagnostic value of the first thyroglobulin determination in detecting metastases after differentiated thyroid carcinoma surgery. Exp Clin Endocrinol Diabetes. 2006;114:485–9.

    Article  CAS  PubMed  Google Scholar 

  258. Heemstra KA, Liu YY, Stokkel M, Kievit J, Corssmit E, Pereira AM, et al. Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol. 2007;66:58–64.

    CAS  Google Scholar 

  259. Karatzas T, Vasileiadis I, Zapanti E, Charitoudis G, Karakostas E, Boutzios G. Thyroglobulin antibodies as a potential predictive marker of papillary thyroid carcinoma in patients with indeterminate cytology. Am J Surg. 2016;212:946–52.

    Article  PubMed  Google Scholar 

  260. Shih ML, Lee JA, Hsieh CB, Yu JC, Liu HD, Kebebew E, et al. Thyroidectomy for Hashimoto’s thyroiditis: complications and associated cance. Thyroid. 2008;18:729–34.

    Article  PubMed  Google Scholar 

  261. Tomoda C, Miyauchi A. Undetectable serum thyroglobulin levels in patients with medullary thyroid carcinoma after total thyroidectomy without radioiodine ablation. Thyroid. 2012;22(7):680–2.

    Article  CAS  PubMed  Google Scholar 

  262. Angell TE, Spencer CA, Rubino BD, Nicoloff JT, LoPresti JS. In search of an unstimulated thyroglobulin baseline value in low-risk papillary thyroid carcinoma patients not receiving radioactive iodine ablation. Thyroid. 2014;24:1127–33.

    Article  CAS  PubMed  Google Scholar 

  263. Spencer CA, Lopresti JS. Measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008;4(4):223–33.

    Article  CAS  PubMed  Google Scholar 

  264. Giovanella L, Imperiali M, Ferrari A, Palumbo A, Furlani L, Graziani MS, et al. Serum thyroglobulin reference values according to NACB criteria in healthy subjects with normal thyroid ultrasound. Clin Chem Lab Med. 2012;50(5):891–3.

    CAS  PubMed  Google Scholar 

  265. Spencer CA, LoPresti JS, Fatemi S, Nicoloff JT. Detection of residual and recurrent differentiated thyroid carcinoma by serum Thyroglobulin measurement. Thyroid. 1999;9:435–41.

    Article  CAS  PubMed  Google Scholar 

  266. Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668–73.

    Article  CAS  PubMed  Google Scholar 

  267. Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88(4):1433–41.

    Article  CAS  PubMed  Google Scholar 

  268. Mazzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab. 2002;87:1486–9.

    Article  Google Scholar 

  269. Bachelot A, Cailleux AF, Klain M, Baudin E, Ricard M, Bellon N, et al. Relationship between tumor burden and serum thyroglobulin level in patients with papillary and follicular thyroid carcinoma. Thyroid. 2002;12:707–11.

    Article  CAS  PubMed  Google Scholar 

  270. Vitale G, Lupoli GA, Ciccarelli A, Lucariello A, Fittipaldi MR, Fonderico F, et al. Influence of body surface area on serum peak thyrotropin (TSH) levels after recombinant human TSH administration. J Clin Endocrinol Metab. 2003;88:1319–22.

    Article  CAS  PubMed  Google Scholar 

  271. Montesano T, Durante C, Attard M, Crocetti U, Meringolo D, Bruno R, et al. Age influences TSH serum levels after withdrawal of l-thyroxine or rhTSH stimulation in patients affected by differentiated thyroid cancer. Biomed Pharmacother. 2007;61:468–71.

    Article  CAS  PubMed  Google Scholar 

  272. Braverman L, Kloos RT, Law B Jr, Kipnes M, Dionne M, Magner J. Evaluation of various doses of recombinant human thyrotropin in patients with multinodular goiters. Endocr Pract. 2008;14:832–9.

    Article  PubMed  Google Scholar 

  273. Over R, Nsouli-Maktabi H, Burman KD, Jonklaas J. Age modifies the response to recombinant human thyrotropin. Thyroid. 2010;20:1377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Schlumberger M, Charbord P, Fragu P, Lumbroso J, Parmentier C, Tubiana M. Circulating thyrotropin and thyroid hormones in patients with metastases of differentiated thyroid carcinoma: relationship to serum thyrotropin levels. J Clin Endocrinol Metab. 1980;51:513–9.

    Article  CAS  PubMed  Google Scholar 

  275. Robbins RJ, Srivastava S, Shaha A, Ghossein R, Larson SM, Fleisher M, et al. Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:6010–6.

    Article  CAS  PubMed  Google Scholar 

  276. Nakabashi CC, Kasamatsu TS, Crispim F, Yamazaki CA, Camacho CP, Andreoni DM, et al. Basal serum thyroglobulin measured by a second-generation assay is equivalent to stimulated thyroglobulin in identifying metastases in patients with differentiated thyroid cancer with low or intermediate risk of recurrence. Eur Thyroid J. 2014;3(1):43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Groen AH, Klein Hesselink MS, Plukker JT, Sluiter WJ, van der Horst-Schrivers AN, Brouwers AH, et al. Additional value of a high sensitive thyroglobulin assay in the follow-up of patients with differentiated thyroid carcinoma. Clin Endocrinol. 2016;86(3):419–24.

    Article  CAS  Google Scholar 

  278. Heilo A, Sigstad E, Fagerlid KH, Håskjold OI, Grøholt KK, Berner A, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96:2750–5.

    Article  CAS  PubMed  Google Scholar 

  279. Hay ID, Lee RA, Davidge-Pitts C, Reading CC, Charboneau JW. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected "recurrent" neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154(6):1448–54. discussion 54-5

    Article  PubMed  Google Scholar 

  280. Yim JH, Kim EY, Bae Kim W, Kim WG, Kim TY, Ryu JS, et al. Long-term consequence of elevated thyroglobulin in differentiated thyroid cancer. Thyroid. 2013;23(1):58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Pacini F, Sabra MM, Tuttle RM. Clinical relevance of thyroglobulin doubling time in the management of patients with differentiated thyroid cancer. Thyroid. 2011;21:691–2.

    Article  PubMed  Google Scholar 

  282. Giovanella L, Trimboli P, Verburg FA, Treglia G, Piccardo A, Foppiani L, et al. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:874–80.

    Article  CAS  PubMed  Google Scholar 

  283. Miyauchi A, Kudo T, Kihara M, Higashiyama T, Ito Y, Kobayashi K, et al. Relationship of biochemically persistent disease and thyroglobulin-doubling time to age at surgery in patients with papillary thyroid carcinoma. Endocr J. 2013;60(4):415–21.

    Article  CAS  PubMed  Google Scholar 

  284. Elisei R, Agate L, Viola D, Matrone A, Biagini A, Molinaro E. How to manage patients with differentiated thyroid cancer and a rising serum thyroglobulin level. Endocrinol Metab Clin N Am. 2014;43(2):331–44.

    Article  Google Scholar 

  285. Kelders A, Kennes LN, Krohn T, Behrendt FF, Mottaghy FM, Verburg FA. Relationship between positive thyroglobulin doubling time and 18F-FDG PET/CT-positive, 131I-negative lesions. Nucl Med Commun. 2014;34:176–81.

    Article  Google Scholar 

  286. Rossing RM, Jentzen W, Nagarajah J, Bockisch A, Gorges R. Serum thyroglobulin doubling time in progressive thyroid cancer. Thyroid. 2016;26(12):1712–8.

    Article  PubMed  CAS  Google Scholar 

  287. Pacini F, Pinchera A. Serum and tissue thyroglobulin measurement: clinical applications in thyroid disease. Biochimie. 1999;81:463–7.

    Article  CAS  PubMed  Google Scholar 

  288. Rotman-Pikielny P, Reynolds JC, Barker WC, Yen PM, Skarulis MC, Sarlis NJ. Recombinant human thyrotropin for the diagnosis and treatment of a highly functional metastatic struma ovarii. J Clin Endocrinol Metab. 2000;85:237–44.

    CAS  PubMed  Google Scholar 

  289. Russo M, Marturano I, Masucci R, Caruso M, Fornito MC, Tumino D, et al. Metastatic malignant struma ovarii with coexistence of Hashimoto’s thyroiditis. Endocrinol Diabetes Metabol Case Rep. 2016;2016:160030.

    Google Scholar 

  290. Trimboli P, D’Aurizio F, Tozzoli R, Giovanella L. Measurement of thyroglobulin, calcitonin, and PTH in FNA washout fluids. Clin Chem Lab Med. 2016;55:914–25.

    Google Scholar 

  291. Pacini F, Fugazzola L, Lippi F, Ceccarelli C, Centoni R, Miccoli P, et al. Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab. 1992;74:1401–4.

    CAS  PubMed  Google Scholar 

  292. Uruno T, Miyauchi A, Shimizu K, Tomoda C, Takamura Y, Ito Y, et al. Usefulness of thyroglobulin measurement in fine-needle aspiration biopsy specimens for diagnosing cervical lymph node metastasis in patients with papillary thyroid cancer. World J Surg. 2005;29:483–5.

    Article  PubMed  Google Scholar 

  293. Boi F, Baghino G, Atzeni F, Lai ML, Faa G, Mariotti S. The diagnostic value for differentiated thyroid carcinoma metastases of thyroglobulin (Tg) measurement in washout fluid from fine-needle aspiration biopsy of neck lymph nodes is maintained in the presence of circulating anti-Tg antibodies. J Clin Endocrinol Metab. 2006;91:1364–9.

    Article  CAS  PubMed  Google Scholar 

  294. Rosario PW, de Faria S, Bicalho L, Alves MF, Borges MA, Purisch S, et al. Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med. 2005;24:1385–9.

    Article  PubMed  Google Scholar 

  295. Snozek CL, Chambers EP, Reading CC, Sebo TJ, Sistrunk JW, Singh RJ, et al. Serum thyroglobulin, high-resolution ultrasound, and lymph node thyroglobulin in diagnosis of differentiated thyroid carcinoma nodal metastases. J Clin Endocrinol Metab. 2007;92:4278–81.

    Article  CAS  PubMed  Google Scholar 

  296. Bruno R, Giannasio P, Chiarella R, Capula C, Russo D, Filetti S, et al. Identification of a neck lump as a lymph node metastasis from an occult contralateral papillary microcarcinoma of the thyroid: key role of thyroglobulin assay in the fine-needle aspirate. Thyroid. 2009;19:531–3.

    Article  PubMed  Google Scholar 

  297. Jeon SJ, Kim E, Park JS, Son KR, Baek JH, Kim YS, et al. Diagnostic benefit of thyroglobulin measurement in fine-needle aspiration for diagnosing metastatic cervical lymph nodes from papillary thyroid cancer: correlations with US features. Korean J Radiol. 2009;10:106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Cunha N, Rodrigues F, Curado F, Ilhéu O, Cruz C, Naidenov P, et al. Thyroglobulin detection in fine-needle aspirates of cervical lymph nodes: a technique for the diagnosis of metastatic differentiated thyroid cancer. Eur J Endocrinol. 2007;157:101–7.

    Article  CAS  PubMed  Google Scholar 

  299. Suh YJ, Son EJ, Moon HJ, Kim EK, Han KH, Kwak JY. Utility of thyroglobulin measurements in fine-needle aspirates of space occupying lesions in the thyroid bed after thyroid cancer operations. Thyroid. 2012;23(3):280–8.

    Article  CAS  Google Scholar 

  300. Cappelli C, Pirola I, De Martino E, Gandossi E, Cimino E, Samoni F, et al. Thyroglobulin measurement in fine-needle aspiration biopsy of metastatic lymph nodes after rhTSH stimulation. Head Neck. 2013;35:E21–3.

    Article  PubMed  Google Scholar 

  301. Grani G, Fumarola A. Thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis of diagnostic accuracy. J Clin Endocrinol Metab. 2014;99(6):1970–82.

    Article  CAS  PubMed  Google Scholar 

  302. Torres MR, Nóbrega Neto SH, Rosas RJ, Martins AL, Ramos AL, da Cruz TR. Thyroglobulin in the washout fluid of lymph-node biopsy: what is its role in the follow-up of differentiated thyroid carcinoma? Thyroid. 2014;24:7–18.

    Article  CAS  PubMed  Google Scholar 

  303. Chung J, Kim EK, Lim H, Son EJ, Yoon JH, Youk JH, et al. Optimal indication of thyroglobulin measurement in fine-needle aspiration for detecting lateral metastatic lymph nodes in patients with papillary thyroid carcinoma. Head Neck. 2014;36(6):795–801.

    Article  PubMed  Google Scholar 

  304. Shi JH, Xu YY, Pan QZ, Sui GQ, Zhou JP, Wang H. The value of combined application of ultrasound-guided fine needle aspiration cytology and thyroglobulin measurement for the diagnosis of cervical lymph node metastases from thyroid cancer. Pak J Med Sci. 2015;31(5):1152–5.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Tang S, Buck A, Jones C, Sara Jiang X. The utility of thyroglobulin washout studies in predicting cervical lymph node metastases: one academic medical center’s experience. Diagn Cytopathol. 2016;44:964–8.

    Article  PubMed  Google Scholar 

  306. Jeon MJ, Kim WG, Jang EK, Choi YM, Lee YM, Sung TY, et al. Thyroglobulin level in fine-needle aspirates for preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma: two different cutoff values according to serum thyroglobulin level. Thyroid. 2015;25(4):410–6.

    Article  CAS  PubMed  Google Scholar 

  307. Pak K, Suh S, Hong H, Cheon GJ, Hahn SK, Kang KW, et al. Diagnostic values of thyroglobulin measurement in fine-needle aspiration of lymph nodes in patients with thyroid cancer. Endocrine. 2015;49(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  308. Zanella AB, Meyer EL, Balzan L, Silva AC, Camargo J, Migliavacca A, et al. Thyroglobulin measurements in washout of fine needle aspirates in cervical lymph nodes for detection of papillary thyroid cancer metastases. Arq Bras Endocrinol Metabol. 2010;54(6):550–4.

    Article  PubMed  Google Scholar 

  309. Baskin HJ. Detection of recurrent papillary thyroid carcinoma by thyroglobulin assessment in the needle washout after fine-needle aspiration of suspicious lymph nodes. Thyroid. 2004;14(11):959–63.

    Article  PubMed  Google Scholar 

  310. Shin HJ, Lee HS, Kim EK, Moon HJ, Lee JH, Kwak JY. A study on serum antithyroglobulin antibodies interference in thyroglobulin measurement in fine-needle aspiration for diagnosing lymph node metastasis in postoperative patients. PLoS One. 2015;10(6):e0131096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Boi F, Maurelli I, Pinna G, Atzeni F, Piga M, Lai ML, et al. Calcitonin measurement in wash-out fluid from fine needle aspiration of neck masses in patients with primary and metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:2115–8.

    Article  CAS  PubMed  Google Scholar 

  312. Abraham D, Gault PM, Hunt J, Bentz J. Calcitonin estimation in neck lymph node fine-needle aspirate fluid prevents misinterpretation of cytology in patients with metastatic medullary thyroid cancer. Thyroid. 2009;19:1015–6.

    Article  PubMed  Google Scholar 

  313. Massaro F, Dolcino M, Degrandi R, Ferone D, Mussap M, Minuto F, et al. Calcitonin assay in wash-out fluid after fine-needle aspiration biopsy in patients with a thyroid nodule and border-line value of the hormone. J Endocrinol Investig. 2009;32:308–12.

    Article  CAS  Google Scholar 

  314. Sapin R, d’Herbomez M, Gasser F, Meyer L, Schlienger JL. Increased sensitivity of a new assay for anti-thyroglobulin antibody detection in patients with autoimmune thyroid disease. Clin Biochem. 2003;36:611–6.

    Article  CAS  PubMed  Google Scholar 

  315. Donegan D, McIver B, Algeciras-Schimnich A. Clinical consequences of a change in anti-thyroglobulin antibody assays during the follow-up of patients with differentiated thyroid cancer. Endocr Pract. 2014;20:1032–6.

    Article  PubMed  Google Scholar 

  316. Gianoukakis AG. Thyroglobulin antibody status and differentiated thyroid cancer: what does it mean for prognosis and surveillance? Curr Opin Oncol. 2015;27(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  317. Lupoli GA, Okosieme OE, Evans C, Clark PM, Pickett AJ, Premawardhana LD, et al. Prognostic significance of thyroglobulin antibody epitopes in differentiated thyroid cancer. J Clin Endocrinol Metab. 2015;100(1):100–8.

    Article  CAS  PubMed  Google Scholar 

  318. Spencer CA. New insights for using serum thyroglobulin (Tg) measurement for managing patients with differentiated thyroid carcinomas. Thyroid Int. 2003;4:1–14.

    Google Scholar 

  319. Nascimento C, Borget I, Troalen F, Al Ghuzlan A, Deandreis D, Hartl D, et al. Ultrasensitive serum thyroglobulin measurement is useful for the follow-up of patients treated with total thyroidectomy without radioactive iodine ablation. Eur J Endocrinol. 2013;169(5):689–93.

    Article  CAS  PubMed  Google Scholar 

  320. Yamada O, Miyauchi A, Ito Y, Nakayama A, Yabuta T, Masuoka H, et al. Changes in serum thyroglobulin antibody levels as a dynamic prognostic factor for early-phase recurrence of thyroglobulin antibody-positive papillary thyroid carcinoma after total thyroidectomy. Endocr J. 2014;61(10):961–5.

    Article  CAS  PubMed  Google Scholar 

  321. Tsushima Y, Miyauchi A, Ito Y, Kudo T, Masuoka H, Yabuta T, et al. Prognostic significance of changes in serum thyroglobulin antibody levels of pre- and post-total thyroidectomy in thyroglobulin antibody-positive papillary thyroid carcinoma patients. Endocr J. 2013;60:871–6.

    Article  CAS  PubMed  Google Scholar 

  322. Tumino S, Belfiore A. Appearance of antithyroglobulin antibodies as the sole sign of metastatic lymph nodes in a patient operated on for papillary thyroid cancer: a case report. Thyroid. 2000;10:431–3.

    Article  CAS  PubMed  Google Scholar 

  323. Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity. 1998;8:363–72.

    Article  CAS  PubMed  Google Scholar 

  324. Uller RP, Van Herle AJ. Effect of therapy on serum thyroglobulin levels in patients with Graves’ disease. J Clin Endocrinol Metab. 1978;46:747–55.

    Article  CAS  PubMed  Google Scholar 

  325. Feldt-Rasmussen U, Blichert-Toft M, Christiansen C, Date J. Serum thyroglobulin and its autoantibody following subtotal thyroid resection of Graves’ disease. Eur J Clin Investig. 1982;12:203–8.

    Article  CAS  Google Scholar 

  326. Benvenga S, Bartolone L, Squadrito S, Trimarchi F. Thyroid hormone autoantibodies elicited by diagnostic fine needle biopsy. J Clin Endocrinol Metab. 1997;82:4217–23.

    CAS  PubMed  Google Scholar 

  327. Polyzos SA, Anastasilakis AD. Alterations in serum thyroid-related constituents after thyroid fine-needle biopsy: a systematic review. Thyroid. 2010;20:265–71.

    Article  CAS  PubMed  Google Scholar 

  328. Izumi M, Larsen PR. Correlation of sequential changes in serum thyroglobulin, triiodothyronine, and thyroxine in patients with Graves’ disease and subacute thyroiditis. Metabolism. 1978;27:449–60.

    Article  CAS  PubMed  Google Scholar 

  329. Feldt-Rasmussen U, Bech K, Date J, Hyltoft Pedersen P, Johansen K, Nistrup Madsen S. Thyroid stimulating antibodies, thyroglobulin antibodies and serum proteins during treatment of Graves’ disease with radioiodine or propylthiouracil. Allergy. 1982;37:161–7.

    Article  CAS  PubMed  Google Scholar 

  330. Feldt-Rasmussen U, Bech K, Date J, Petersen PH, Johansen K. A prospective study of the differential changes in serum thyroglobulin and its autoantibodies during propylthiouracil or radioiodine therapy of patients with Graves’ disease. Acta Endocrinol. 1982;99:379–85.

    Article  CAS  Google Scholar 

  331. Stevic I, Dembinski TC, Pathak KA, Leslie WD. Transient early increase in thyroglobulin levels post-radioiodine ablation in patients with differentiated thyroid cancer. Clin Biochem. 2015;48(10-11):658–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Spencer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatemi, S., Spencer, C. (2018). Thyroglobulin. In: Mallick, U.K., Harmer, C. (eds) Practical Management of Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-91725-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91725-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91724-5

  • Online ISBN: 978-3-319-91725-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics