Skip to main content

Specification-Driven Multi-perspective Predictive Business Process Monitoring

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2018, EMMSAD 2018)

Abstract

Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Thus, different from previous studies, our approach enables us to deal with various kinds of prediction tasks based on the given specification. A prototype implementing our approach has been developed and experiments using a real-life event log have been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that variables are standardized apart, i.e., no two quantifiers bind the same variable (e.g., \(\forall i . \exists i . (i > 3)\)), and no variable occurs both free and bound (e.g., \((i> 5) ~\wedge ~\exists i . (i > 3)\)). As usual in FOL, every FOE formula can be transformed into a semantically equivalent formula where the variables are standardized apart by applying some variable renaming [28].

  2. 2.

    Note that timestamp can be represented as milliseconds since epoch (hence, it is a number).

  3. 3.

    More information about the implementation architecture, the code, the tool, and the screencast can be found at http://bit.ly/predictive-analysis.

  4. 4.

    ProM is an extendable framework for process mining (http://www.promtools.org).

References

  1. van der Aalst, W.M.P.: Process Mining. Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.M.P., Schonenberg, M., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  3. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services. In: the 32nd ACM SIGACT SIGMOD SIGAI Symposium on Principles of Database Systems (PODS), pp. 163–174 (2013)

    Google Scholar 

  4. Bagheri Hariri, B., Calvanese, D., Montali, M., Santoso, A., Solomakhin, D.: Verification of semantically-enhanced artifact systems. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 600–607. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_51

    Chapter  Google Scholar 

  5. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)

    Article  Google Scholar 

  6. Calvanese, D., Ceylan, İİ., Montali, M., Santoso, A.: Verification of context-sensitive knowledge and action bases. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 514–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_36

    Chapter  Google Scholar 

  7. Calvanese, D., Montali, M., Santoso, A.: Verification of generalized inconsistency-aware knowledge and action bases (extended version). CoRR Technical report arXiv:1504.08108, arXiv.org e-Print archive (2015). http://arxiv.org/abs/1504.08108

  8. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)

    Article  Google Scholar 

  9. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1–18 (2016)

    Google Scholar 

  10. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  11. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

    Book  Google Scholar 

  13. IEEE Comp. Intelligence Society: IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability in event logs and event streams. IEEE Std 1849–2016 (2016)

    Google Scholar 

  14. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  15. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  16. Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_8

    Chapter  Google Scholar 

  17. Metzger, A., Leitner, P., Ivanović, D., Schmieders, E., Franklin, R., Carro, M., Dustdar, S., Pohl, K.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 276–290 (2015)

    Article  Google Scholar 

  18. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: Annual SRII Global Conference (2012)

    Google Scholar 

  19. Object Management Group: Decision Model and Notation (DMN) 1.0 (2015). http://www.omg.org/spec/DMN/1.0/

  20. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18

    Chapter  Google Scholar 

  21. Pika, A., van der Aalst, W., Wynn, M., Fidge, C., ter Hofstede, A.: Evaluating and predicting overall process risk using event logs. Inf. Sci. 352–353, 98–120 (2016)

    Article  Google Scholar 

  22. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36285-9_22

    Chapter  Google Scholar 

  23. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN) (2014)

    Google Scholar 

  24. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and Activity Sequence Prediction of Business Process Instances. CoRR abs/1602.07566 (2016)

    Google Scholar 

  25. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  26. Santoso, A.: Specification-driven multi-perspective predictive business process monitoring (extended version). CoRR Technical Report arXiv:1804.00617, arXiv.org e-Print archive (2018). https://arxiv.org/abs/1804.00617

  27. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predicting delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_4

    Chapter  Google Scholar 

  28. Smullyan, R.M.: First Order Logic. Springer, Heidelberg (1968). https://doi.org/10.1007/978-3-642-86718-7

    Book  Google Scholar 

  29. Steeman, W.: BPI challenge 2013 (2013). https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

  30. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  31. Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Di Francescomarino, C.: Complex symbolic sequence clustering and multiple classifiers for predictive process monitoring. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 218–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_18

    Chapter  Google Scholar 

Download references

Acknowledgement

This research has been supported by the Euregio IPN12 “KAOS: Knowledge-Aware Operational Support” project, which is funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects. The author thanks Tri Kurniawan Wijaya for various suggestions related to this work, and Yasmin Khairina for the implementation of some prototype components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ario Santoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santoso, A. (2018). Specification-Driven Multi-perspective Predictive Business Process Monitoring. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2018 2018. Lecture Notes in Business Information Processing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-91704-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91704-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91703-0

  • Online ISBN: 978-3-319-91704-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics