Towards Full End-Users Control of Social Recommendations

  • Gabriela BosettiEmail author
  • Sergio Firmenich
  • Alejandro Fernández
  • Martin Wischenbart
  • Gustavo Rossi
  • Damiano Distante
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10845)


Recommender systems are integrated with a significant number of Web applications helping users to find what may be of their interest. However, these systems do not always satisfy the users’ expectations regarding when and where recommendations are available, what is recommended, the source of the recommendations or how they are presented. Moreover, users may expect recommendations on sites that do not offer them. This work presents an approach for empowering users to generate a recommendation layer above the presentation layer of any existing (even third-party) Web application. The approach considers recommender systems as user-constructed artifacts, pluggable to any website and offering users full control at both stages of the recommendation process: the creation and the provision of recommendations. This paper presents preliminary work on the approach, concretely, a toolset to support our claims. Generalization tests on popular websites show no apparent restrictions regarding domain applicability.


Recommender systems Web augmentation User customization Social web 


  1. 1.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  2. 2.
    Guy, I.: Social recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 511–543. Springer, Boston, MA (2015). Scholar
  3. 3.
    Knijnenburg, B.P., Bostandjiev, S., Donovan, J.O., Kobsa, A.: Inspectability and control in social recommenders. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 43–50 (2012)Google Scholar
  4. 4.
    Hijikata, Y., Kai, Y., Nishida, S.: A study of user intervention and user satisfaction in recommender systems. MIS Q. 22(4), 669–678 (2014)Google Scholar
  5. 5.
    Harper, F.M., Xu, F., Kaur, H., Condiff, K., Chang, S., Terveen, L.: Putting users in control of their recommendations. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 3–10. ACM, New York (2015)Google Scholar
  6. 6.
    Ekstrand, M.D., Kluver, D., Harper, F.M., Konstan, J.A.: Letting users choose recommender algorithms: an experimental study. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 11–18. ACM, New York (2015)Google Scholar
  7. 7.
    Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P.: Cross-domain recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 919–959. Springer, Boston, MA (2015). Scholar
  8. 8.
    Díaz, O., Arellano, C., Azanza, M.: A language for end-user web augmentation: caring for producers and consumers alike. ACM TWEB 7(2) (2013). Article No. 9CrossRefGoogle Scholar
  9. 9.
    Verbert, K., Parra, D., Brusilovsky, P., Duval, E.: Visualizing recommendations to support exploration, transparency and controllability. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 351–362. ACM (2013)Google Scholar
  10. 10.
    Wischenbart, M., Firmenich, S., Rossi, G., Wimmer, M.: Recommender systems for the people - enhancing personalization in web augmentation. In: Proceedings of the Joint Workshop on Interfaces and Human Decision Making for Recommender Systems, pp. 53–60 (2015)Google Scholar
  11. 11.
    Toomim, M., Drucker, S.M., Dontcheva, M., Rahimi, A., Thomson, B., Landay, J.A.: Attaching UI enhancements to websites with end users. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1859–1868. ACM, New York (2009)Google Scholar
  12. 12.
    Firmenich, S., Bosetti, G., Rossi, G., Winckler, M., Barbieri, T.: Abstracting and structuring web contents for supporting personal web experiences. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 77–95. Springer, Cham (2016). Scholar
  13. 13.
    Frankowski, D., Lam, S.K., Sen, S., Harper, F.M., Yilek, S., Cassano, M., Riedl, J.: Recommenders everywhere: the wikilens community-maintained recommender system. In: Proceedings of the 2007 International Symposium on Wikis, pp. 47–60. ACM, New York (2007)Google Scholar
  14. 14.
    Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human Computer Interaction. Wiley, Chichester (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIFIA, Facultad de InformáticaUNLPLa PlataArgentina
  2. 2.CONICETCiudad Autónoma de Buenos Aires (CABA)Argentina
  3. 3.CICBuenos AiresArgentina
  4. 4.Josephinum ResearchWieselburgAustria
  5. 5.University of Rome Unitelma SapienzaRomeItaly

Personalised recommendations