Advertisement

New Techniques for Inferring L-systems Using Genetic Algorithm

  • Jason Bernard
  • Ian McQuillan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10835)

Abstract

Lindenmayer systems (L-systems) are a formal grammar system that iteratively rewrites all symbols of a string, in parallel. When visualized with a graphical interpretation, the images have been particularly successful as a concise method for simulating plants. Creating L-systems to simulate a given plant manually by experts is limited by the availability of experts and time. This paper introduces the Plant Model Inference Tool (PMIT) that infers deterministic context-free L-systems from an initial sequence of strings generated by the system using a genetic algorithm. PMIT is able to infer more complex systems than existing approaches. Indeed, while existing approaches can infer D0L-Systems where the sum of production successors is 20, PMIT can infer those where the sum is 140. This was validated using a testbed of 28 known D0L-system models, in addition to models created artificially by bootstrapping larger models.

Keywords

L-systems Inductive inference Genetic algorithm Plant modeling 

References

  1. 1.
    Lindenmayer, A.: Mathematical models for cellular interaction in development, parts I and II. J. Theor. Biol. 18, 280–315 (1968)CrossRefGoogle Scholar
  2. 2.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990).  https://doi.org/10.1007/978-1-4613-8476-2CrossRefzbMATHGoogle Scholar
  3. 3.
    University of Calgary: Algorithmic BotanyGoogle Scholar
  4. 4.
    Allen, M.T., Prusinkiewicz, P., DeJong, T.M.: Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytol. 166(3), 869–880 (2005)CrossRefGoogle Scholar
  5. 5.
    Prusinkiewicz, P., Crawford, S., Smith, R., Ljung, K., Bennet, T., Ongaro, V., Leyser, O.: Control of bud activation by an auxin transport switch. Proc. Nat. Acad. Sci. 106(41), 17431–17436 (2009)CrossRefGoogle Scholar
  6. 6.
    Nakano, R., Yamada, N.: Number theory-based induction of deterministic context-free L-system grammar. In: International Conference on Knowledge Discovery and Information Retrieval, pp. 194–199. SCITEPRESS (2010)Google Scholar
  7. 7.
    Runqiang, B., Chen, P., Burrage, K., Hanan, J., Room, P., Belward, J.: Derivation of L-system models from measurements of biological branching structures using genetic algorithms. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS (LNAI), vol. 2358, pp. 514–524. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-48035-8_50CrossRefGoogle Scholar
  8. 8.
    Prusinkiewicz, P., Mündermann, L., Karwowski, R., Lane, B.: The use of positional information in the modeling of plants. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 289–300. ACM (2001)Google Scholar
  9. 9.
    Jacob, C.: Genetic L-system programming: breeding and evolving artificial flowers with Mathematica. In: Proceedings of the First International Mathematica Symposium, pp. 215–222 (1995)Google Scholar
  10. 10.
    Mock, K.J.: Wildwood: the evolution of L-system plants for virtual environments. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, pp. 476–480. IEEE (1998)Google Scholar
  11. 11.
    Bernard, J., McQuillan, I.: New techniques for inferring L-systems using genetic algorithm (2017). https://arxiv.org/abs/1712.00180
  12. 12.
    Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  13. 13.
    Ben-Naoum, F.: A survey on L-system inference. INFOCOMP J. Comput. Sci. 8(3), 29–39 (2009)Google Scholar
  14. 14.
    Doucet, P.G.: The syntactic inference problem for DOL-sequences. In: Rozenberg, G., Salomaa, A. (eds.) L Systems. LNCS, vol. 15, pp. 146–161. Springer, Heidelberg (1974).  https://doi.org/10.1007/3-540-06867-8_12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations