Multi-objective Design of Time-Constrained Bike Routes Using Bio-inspired Meta-heuristics

  • Eneko OsabaEmail author
  • Javier Del Ser
  • Miren Nekane Bilbao
  • Pedro Lopez-Garcia
  • Antonio J. Nebro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10835)


This paper focuses on the design and implementation of a bike route optimization approach based on multi-objective bio-inspired heuristic solvers. The objective of this approach is to produce a set of Pareto-optimal bike routes that balance the trade-off between the length of the route and its safety level, the latter blending together the slope of the different street segments encompassing the route and their average road velocity. Additionally, an upper and lower restriction is imposed on the time taken to traverse the route, so that the overall system can be utilized for planning bike rides during free leisure time gaps. Instead of designing a discrete route encoding strategy suitable for heuristic operators, this work leverages a proxy software – Open Trip Planner, OTP – capable of computing routes based on three user-level preference factors (i.e. safety, inclination and duration), which eases the adoption of off-the-shelf multi-objective solvers. The system has been assessed in a realistic simulation environments over the city of Bilbao (Spain) using multi-objective bio-inspired approaches. The obtained results are promising, with route sets trading differently distance for safety of utmost utility for bike users to exploit fully their leisure time.


Bike route planning Multi-objective optimization Time-constrained routing Open Trip Planner jMetal 



E. Osaba and J. Del Ser would like to thank the Basque Government for its funding support through the EMAITEK program. This work is also partially funded by Grants TIN2017-86049-R and TIN2014-58304 (Ministerio de Ciencia e Innovación), and P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I+D+I).


  1. 1.
    Wang, F.Y.: Scanning the issue and beyond: transportation and mobility transformation for smart cities. IEEE Trans. Intell. Transp. Syst. 16(2), 525–533 (2015)CrossRefGoogle Scholar
  2. 2.
    Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 19–80. Springer, Cham (2016). Scholar
  3. 3.
    Zografos, K.G., Androutsopoulos, K.N.: Algorithms for itinerary planning in multimodal transportation networks. IEEE Trans. Intell. Transp. Syst. 9(1), 175–184 (2008)CrossRefGoogle Scholar
  4. 4.
    Staunton, C.E., Hubsmith, D., Kallins, W.: Promoting safe walking and biking to school: the marin county success story. Am. J. Public Health 93(9), 1431–1434 (2003)CrossRefGoogle Scholar
  5. 5.
    Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public transportation networks: a labelling approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 967–982. ACM (2015)Google Scholar
  6. 6.
    Turverey, R.J., Cheng, D.D., Blair, O.N., Roth, J.T., Lamp, G.M., Cogill, R.: Charlottesville bike route planner. In: Systems and Information Engineering Design Symposium, pp. 68–72. IEEE (2010)Google Scholar
  7. 7.
    Bucher, D., Jonietz, D., Raubal, M.: A heuristic for multi-modal route planning. In: Gartner, G., Huang, H. (eds.) Progress in Location-Based Services 2016. LNGC, pp. 211–229. Springer, Cham (2017). Scholar
  8. 8.
    Hrnčíř, J., Žileckỳ, P., Song, Q., Jakob, M.: Practical multicriteria urban bicycle routing. IEEE Trans. Intell. Transp. Syst. 18(3), 493–504 (2017)CrossRefGoogle Scholar
  9. 9.
    Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16(2), 236–245 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Caggiani, L., Camporeale, R., Ottomanelli, M.: A real time multi-objective cyclists route choice model for a bike-sharing mobile application. In: IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, pp. 645–650. IEEE (2017)Google Scholar
  11. 11.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  12. 12.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 8(11), 712–731 (2008)Google Scholar
  13. 13.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefGoogle Scholar
  14. 14.
    Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making (MCDM 2009), pp. 66–73. IEEE Press (2009)Google Scholar
  15. 15.
    Open Trip Planner. Accessed 30 Nov 2017
  16. 16.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 12(2), 284–302 (2009)CrossRefGoogle Scholar
  17. 17.
    Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)CrossRefGoogle Scholar
  18. 18.
    Planet OSM. Accessed 30 Nov 2017
  19. 19.
    BBBike tool. Accessed 30 Nov 2017
  20. 20.
    Hart, C., Koupal, J., Giannelli, R.: EPA’s onboard analysis shootout: Overview and results. Technical report, United States Environmental Protection Agency (2002)Google Scholar
  21. 21.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eneko Osaba
    • 1
    Email author
  • Javier Del Ser
    • 1
    • 2
    • 3
  • Miren Nekane Bilbao
    • 2
  • Pedro Lopez-Garcia
    • 4
  • Antonio J. Nebro
    • 5
  1. 1.TECNALIADerioSpain
  2. 2.University of the Basque Country (UPV/EHU)BilbaoSpain
  3. 3.Basque Center for Applied Mathematics (BCAM)BilbaoSpain
  4. 4.Deusto Institute of Technology (DeustoTech)University of DeustoBilbaoSpain
  5. 5.Dept. de Lenguajes y Ciencias de la ComputaciónUniversidad de MálagaMálagaSpain

Personalised recommendations