Comparing Boundary Control Methods for Firefly Algorithm

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10835)


This paper compares four different methods for handling the roaming behavior of fireflies in the firefly algorithm. The problems of boundary constrained optimization forces the algorithm to actively keep the fireflies inside the feasible area of possible solutions. The recent CEC’17 benchmark suite is used for the performance comparison of the methods and the results are compared and tested for statistical significance.


Firefly Algorithm Boundary Lévy flight 



This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2018/003. This work is also based upon support by COST (European Cooperation in Science & Technology) under Action CA15140, Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO), and Action IC406, High-Performance Modelling and Simulation for Big Data Applications (cHiPSet).


  1. 1.
    Yang, X.S.: Algorithms N.I.M., pp. 242–246. Luniver Press, Beckington (2008)Google Scholar
  2. 2.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). Scholar
  3. 3.
    Oosumi, R., Tamura, K., Yasuda, K.: Novel single-objective optimization problem and firefly algorithm-based optimization method. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001011–001015. IEEE (2016)Google Scholar
  4. 4.
    Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2), 175–184 (2013)CrossRefGoogle Scholar
  5. 5.
    Yang, X.S.: Firefly algorithm, lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010). Scholar
  6. 6.
    dos Santos Coelho, L., Mariani, V.C.: Firefly algorithm approach based on chaotic tinkerbell map applied to multivariable PID controller tuning. Comput. Math. Appl. 64(8), 2371–2382 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Helwig, S., Branke, J., Mostaghim, S.: Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans. Evol. Comput. 17(2), 259–271 (2013)CrossRefGoogle Scholar
  8. 8.
    Kadavy, T., Pluhacek, M., Viktorin, A., Senkerik, R.: Comparing border strategies for roaming particles on single and multi-swarm PSO. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 528–536. Springer, Cham (2017). Scholar
  9. 9.
    Awad, N., Ali, M., Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical Report. NTU, Singapore (2016)Google Scholar
  10. 10.
    Kadavy, T., Pluhacek, M., Viktorin, A., Senkerik, R.: Hypersphere universe boundary method comparison on HCLPSO and PSO. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 173–182. Springer, Cham (2017). Scholar
  11. 11.
    Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A lévy flight for light. Nature 453(7194), 495 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomas Bata University in ZlinZlinCzech Republic

Personalised recommendations