Abstract
Markov Regenerative Processes (MRgP) with enabling restriction allow to model stochastic processes where the firing distribution of some events may be specified by a non-Markovian Probability Distribution Function, provided that at most one of these events is enabled in any state of the process. The GreatSPN framework is a collection of tools for the modeling and analysis of systems specified as Stochastic Petri Nets. The paper describes the new features of the MRgP solver of GreatSPN to deal with MRgP processes. The solver supports a rich language for the specification of non-Markovian events, and different solution techniques (explicit, matrix-free, component-based) for the MRgP analysis. The potentiality of the tools are shown on a few examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1986. LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18086-9_23
Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2, 93–122 (1984)
Amparore, E.G.: The home of the new GreatSPN Graphical User Interface (2014). http://www.di.unito.it/~amparore/mc4cslta/editor.html
Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for Markov regenerative processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 9–24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_3
Amparore, E.G., Donatelli, S.: DSPN-Tool: a new DSPN and GSPN solver for GreatSPN. In: International Conference on Quantitative Evaluation of Systems, Los Alamitos, CA, USA, pp. 79–80. IEEE Computer Society (2010)
Amparore, E.G., Donatelli, S.: Revisiting the matrix-free solution of Markov regenerative processes. Numer. Linear Algebr. Appl. Spec. Issue Numer. Solut. Markov Chains 18, 1067–1083 (2011)
Amparore, E.G., Donatelli, S.: A component-based solution for reducible Markov regenerative processes. Perform. Eval. 70(6), 400–422 (2013)
Amparore, E.G., Donatelli, S.: alphaFactory: a tool for generating the alpha factors of general distributions. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_3
Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: non-Markovian stochastic Petri net tool. In: 18th Conference on Application and Theory of Petri Nets (1997)
Bodenstein, C., Zimmermann, A.: TimeNET optimization environment: batch simulation and heuristic optimization of SCPNs with TimeNET 4.2. In: 8th International Conference on Performance Evaluation Methodologies and Tools, pp. 129–133. ICST (2014)
Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transfer 12(5), 391–403 (2010)
Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0_30
Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)
Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1–3), 337–357 (1994)
Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Response time densities in generalised stochastic Petri nets. In: Workshop on Software and Performance, pp. 46–54 (2002)
Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSL\(^\text{ TA }\). IEEE Trans. Softw. Eng. 35(2), 224–240 (2009)
German, R.: Markov regenerative stochastic Petri nets with general execution policies: supplementary variable analysis and a prototype tool. Perform. Eval. 39(1–4), 165–188 (2000)
German, R.: Performance Analysis of Communication Systems with Non-Markovian Stochastic Petri Nets. Wiley, New York (2000)
German, R.: Iterative analysis of Markov regenerative models. Perform. Eval. 44, 51–72 (2001)
Grassmann, W.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4(1), 47–53 (1977)
Lindemann, C.: Performance Modelling with Deterministic and Stochastic Petri Nets. Wiley, New York (1998)
Longo, F., Scarpa, M.: Two-layer symbolic representation for stochastic models with Phase-type distributed events. Int. J. Syst. Sci. 46(9), 1540–1571 (2015)
Mura, I., Bondavalli, A., Zang, X., Trivedi, K.S.: Dependability modeling and evaluation of phased mission systems: a DSPN approach. In: International Conference on Dependable Computing for Critical Applications (DCCA), pp. 299–318. IEEE (1999)
Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and evaluate the dependability of phased mission systems dependability. IEEE Trans. Comput. 50(12), 1337–1351 (2001)
Zimmermann, A.: Modelling and performance evaluation with TimeNET 4.4. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 300–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_19
Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri net modelling and performability evaluation with TimeNET 3.0. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 188–202. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46429-8_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Amparore, E.G., Donatelli, S. (2018). Analysis of Non-Markovian Systems in GreatSPN. In: Balsamo, S., Marin, A., Vicario, E. (eds) New Frontiers in Quantitative Methods in Informatics. InfQ 2017. Communications in Computer and Information Science, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-319-91632-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-91632-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91631-6
Online ISBN: 978-3-319-91632-3
eBook Packages: Computer ScienceComputer Science (R0)