Advertisement

40 Perspectives of Biophysical Modelling with Implications on Biological Connectivity of Mediterranean Cold-Water Corals

  • Matthew W. JohnstonEmail author
  • Ann I. Larsson
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

Biological connectivity of marine organisms that reproduce via planktonic larvae, such as cold-water corals, is regulated by the reproductive and life history traits of the organism and by physical characteristics of the marine environment into which offspring are released. Connectivity across vast seascapes enables the persistence of metapopulations over ecological and evolutionary timescales and is important when planning the conservation and management of vulnerable species impacted by overfishing, habitat destruction, or invasive species. To study marine connectivity of these organisms, researchers typically measure genetic population structure or use computer modeling, the latter often using biophysical models which integrate both the physical processes of the ocean and the biological traits of the study species. Herein, a broad overview of biophysical modeling topics will be presented including source-sink dynamics and model parameterisation, paradigms, uses, and examples. Unfortunately, there is limited availability of basic life history data on Mediterranean cold-water corals, which are required to implement such models. Known biological traits that are important for dispersal and connectivity are therefore here summarised for cold-water corals found in the Mediterranean and elsewhere. The traits are discussed in context of dispersal potential and their potential use as parameters in biophysical modeling studies of dispersal. Very few such studies of cold-water corals have to date been performed and none of them in the Mediterranean, therefore as a complement global modeling examples will be given for species that reproduce in a similar fashion. It is hoped that these examples can provide insight into the future usage of biophysical modeling to study Mediterranean cold-water corals as their characteristics and the physical influences that shape their population connectivity are better understood.

Keywords

Biophysical models Connectivity Population connectivity Source-sink dynamics Modeling Larval dispersal CWCs Life history traits 

References

  1. Andrello M, Mouillot D, Beuvier J, et al (2013) Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS One 8:e68564PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arellano SM, Van Gaest AL, Johnson SB, et al (2014) Larvae from deep-sea methane seeps disperse in surface waters. Proc R Soc B 281:20133276PubMedCrossRefGoogle Scholar
  3. Baillon S, Hamel JF, Wareham VE, et al (2014) Seasonality in reproduction of the deep-water pennatulacean coral Anthoptilum grandiflorum. Mar Biol 161:29–43CrossRefGoogle Scholar
  4. Beazley LI, Kenchington EL (2012) Reproductive biology of the deep-water coral Acanella arbuscula (phylum Cnidaria: class Anthozoa: order Alcyonacea), Northwest Atlantic. Deep-Sea Res Part 1 Oceanogr Res Pap 68:92–104CrossRefGoogle Scholar
  5. Becheler R, Cassone AL, Noël P, et al (2017) Low incidence of clonality in cold water corals revealed through the novel use of a standardized protocol adapted to deep-sea sampling. Deep-Sea Res Part 2 Top Stud Oceanogr 145:120–130CrossRefGoogle Scholar
  6. Borghin M, Bryden H, Schroeder K, et al (2014) The Mediterranean is becoming saltier. Ocean Sci 10:693–700CrossRefGoogle Scholar
  7. Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153CrossRefGoogle Scholar
  8. Brooke S, Stone R (2007) Reproduction of deep-water hydrocorals (family Stylasteridae) from the Aleutian Islands, Alaska. Bull Mar Sci 81:519–532Google Scholar
  9. Brooke S, Young CM (2003) Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa, from the Southeast Florida shelf. Cont Shelf Res 23:847–858CrossRefGoogle Scholar
  10. Brooke S, Young CM, Holmes M (2007) Ch 6. Biological characterization and studies. In: Continental shelf associates. Characterization of northern Gulf of Mexico Deepwater hard bottom communities with emphasis on Lophelia coral. Final report to US Dept interior, minerals management service, Gulf of Mexico region. OCS Study 2007-044:119–147Google Scholar
  11. Bryden HL, Candela J, Kinder TH (1994) Exchange through the strait of Gibraltar. Progr Oceanogr 33:201–248CrossRefGoogle Scholar
  12. Buonomo R, Assis J, Fernandes F, et al (2017) Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Mol Ecol 26:766–780PubMedCrossRefGoogle Scholar
  13. Burgess S, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 701–713CrossRefGoogle Scholar
  14. Cardona Y, Ruiz-Ramos D, Baums IB, et al (2016) Potential connectivity of Coldwater black coral communities in the northern Gulf of Mexico. PLoS One 11:e0156257PubMedPubMedCentralCrossRefGoogle Scholar
  15. Catarino D, Stefanni S, Jorde PE, et al (2017) The role of the strait of Gibraltar in shaping the genetic structure of the Mediterranean grenadier, Coryphaenoides mediterraneus, between the Atlantic and Mediterranean Sea. PLoS One 12:e0174988PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cherubin L, Carton X, Paillet J, et al (2000) Instability of the Mediterranean water undercurrents southwest of Portugal: effects of baroclinicity and of topography. Oceanol Acta 23:551–573CrossRefGoogle Scholar
  17. Cordes EE, Nybakken JW, VanDykhuizen G (2001) Reproduction and growth of Anthomastus ritteri (Octocorallia : Alcyonacea) from Monterey Bay, California, USA. Mar Biol 138:491–501CrossRefGoogle Scholar
  18. Corell H, Moksnes PO, Engqvist A, et al (2012) Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Mar Ecol Progr Ser 467:29–46CrossRefGoogle Scholar
  19. Costantini F, Fauvelot C, Abbiati M (2007) Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effects of larval dispersal. Mar Ecol Progr Ser 340:100–119CrossRefGoogle Scholar
  20. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  21. Cowen RK, Lwiza KM, Sponaugle S, et al (2000) Connectivity of marine populations: open or closed? Science 287(5454):857–859PubMedCrossRefGoogle Scholar
  22. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527PubMedCrossRefGoogle Scholar
  23. D’Onghia G, Capezzuto F, Cardone F, et al (2015) Macro- and megafauna recorded in the submarine Bari canyon (southern Adriatic, Mediterranean Sea) using different tools. Mediterr Mar Sci 16:180–196.  https://doi.org/10.12681/mms.1082 CrossRefGoogle Scholar
  24. Dahl MP, Pereyra RT, Lundälv T, et al (2012) Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs 31:1135–1148CrossRefGoogle Scholar
  25. Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6:e18483PubMedPubMedCentralCrossRefGoogle Scholar
  26. Eckelbarger KJ, Tyler PA, Langton RW (1998) Gonadal morphology and gametogenesis in the sea pen Pennatula aculeata (Anthozoa: Pennatulacea) from the Gulf of Maine. Mar Biol 132:677−690CrossRefGoogle Scholar
  27. Estournel C, Durrieu de Madron X, Marsaleix P, et al (2003) Observation and modeling of the winter coastal oceanic circulation in the Gulf of lion under wind conditions influenced by the continental orography (FETCH experiment). J Geophys Res Oceans 108(C3)Google Scholar
  28. Feehan K (2016) Highly seasonal reproduction in Desmophyllum dianthus from the northern Patagonian fjords. In: Electronic theses and dissertations: 2433. University of Maine. http://digitalcommons.library.umaine.edu/etd/2433 Google Scholar
  29. Feehan KA, Waller RG (2015) Notes on reproduction of eight species of eastern Pacific cold-water octocorals. J Mar Biol Assoc UK 95:691–696CrossRefGoogle Scholar
  30. Fiksen Ø, Jørgensen C, Kristiansen T, et al (2007) Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal. Mar Ecol Progr Ser 347:195–205CrossRefGoogle Scholar
  31. Fox AD, Henry LA, Corne DW, et al (2016) Sensitivity of marine protected area network connectivity to atmospheric variability. R Soc Open Sci 3:160494PubMedPubMedCentralCrossRefGoogle Scholar
  32. Freiwald A (2002) Reef-forming CWCs. In: Wefer G, Billet D, Hebbeln D, et al (eds) Ocean margin systems. Springer, Berlin, pp 365–385CrossRefGoogle Scholar
  33. Freiwald A, Beuck L, Rüggeberg A, et al (2009) The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74CrossRefGoogle Scholar
  34. Gaines SD, Gaylord B, Gerber LR, et al (2007) Connecting places: the ecological consequences of dispersal in the sea. Oceanography 20:90–99CrossRefGoogle Scholar
  35. Gori A, Bramanti L, Lopez-Gonzalez P, et al (2012) Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian Eunicella singularis. Mar Biol 159:1485–1496CrossRefGoogle Scholar
  36. Grinyó J (2016) Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel (North Western Mediterranean). PhD thesis, Polytechnic University of Catalonia, 170 p.  https://doi.org/10.13140/RG.2.2.24275.78885
  37. Guizien K, Bramanti L (2014) Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age-structure. Theor Biol Forum 107:47–56PubMedGoogle Scholar
  38. Guizien K, Brochier T, Duchêne JC, et al (2006) Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar Ecol Progr Ser 311:47–66CrossRefGoogle Scholar
  39. Guizien K, Belharet M, Marsaleix P, et al (2012) Using larval dispersal simulations for marine protected area design: application to the Gulf of lions (Northwest Mediterranean). Limnol Oceanogr 57:1099–1112CrossRefGoogle Scholar
  40. Hamner WM, Jones MS, Carleton JH, et al (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: great barrier reef. Aust Bull Mar Sci 42:459–479Google Scholar
  41. Harii S, Kayanne H (2003) Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, Southwest Japan. Coral Reefs 22:188–196CrossRefGoogle Scholar
  42. Harii S, Kayanne H, Takigawa H, et al (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141:39–46CrossRefGoogle Scholar
  43. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, New York, pp 133–207Google Scholar
  44. Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography. Spec issue marine Populat conn, vol 20, pp 70–79Google Scholar
  45. Hellberg ME, Burton RS, Neigel JE, et al (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290Google Scholar
  46. Hernandez O, Lehodey P, Senina I, et al (2014) Understanding mechanisms that control fish spawning and larval recruitment: parameter optimization of an Eulerian model (SEAPODYM-SP) with Peruvian anchovy and sardine eggs and larvae data. Progr Oceanogr 123:105–122CrossRefGoogle Scholar
  47. Hilário A, Metaxas A, Gaudron S, et al (2015) Estimating dispersal distance in the deep sea: challenges and applications to marine reserves. Front Mar Sci 2:6CrossRefGoogle Scholar
  48. Johnston MW, Bernard AM (2017) A bank divided: quantifying a spatial and temporal connectivity break between the Campeche Bank and the northeastern Gulf of Mexico. Mar Biol 164:12CrossRefGoogle Scholar
  49. Johnston MW, Purkis SJ (2014) Are lionfish set for a Mediterranean invasion? Modelling explains why this is unlikely to occur. Mar Pollut Bull 88:138–147.  https://doi.org/10.1016/j.marpolbul.2014.09.013 PubMedCrossRefGoogle Scholar
  50. Johnston MW, Purkis SJ (2015) A coordinated and sustained international strategy is required to turn the tide on the Atlantic lionfish invasion. Mar Ecol Progr Ser 533:219–235.  https://doi.org/10.3354/meps11399 CrossRefGoogle Scholar
  51. Johnston MW, Purkis SJ (2016) Forecasting the success of invasive marine species; lessons learned from purposeful reef fish releases in the Hawaiian islands. Fish Res 174:190–200CrossRefGoogle Scholar
  52. Johnston MW, Bernard AM, Shivji MS (2017) Forecasting lionfish sources and sinks in the Atlantic: are Gulf of Mexico reef fisheries at risk? Coral Reefs 36:169–181CrossRefGoogle Scholar
  53. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 1:1314–1318CrossRefGoogle Scholar
  54. Jones R, Ricardo GF, Negri AP (2016) Effects of sediments on the reproductive cycle of corals. Mar Pollut Bull 100:13–33CrossRefGoogle Scholar
  55. Kool JT, Paris CB, Andréfouët S, et al (2010) Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33:597–606Google Scholar
  56. Kourafalou VH, Peng G, Kang H, et al (2009) Evaluation of global ocean data assimilation experiment products on South Florida nested simulations with the Hybrid Coordinate Ocean model. Ocean Dyn 59:47–66CrossRefGoogle Scholar
  57. Larsson AI, Järnegren J, Strömberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9:e102222PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ledoux J, Garrabou J, Bianchimani O, et al (2010) Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol 19:4204–4216PubMedCrossRefGoogle Scholar
  59. Lett C, Verley P, Mullon C, et al (2008) A Lagrangian tool for modelling ichthyoplankton dynamics. Environ Model Softw 23:1210–1214CrossRefGoogle Scholar
  60. Liggins L, Treml EA, Riginos C (2013) Taking the plunge: an introduction to undertaking seascape genetic studies and using biophysical models. Geogr Compass 7:173–196CrossRefGoogle Scholar
  61. Luiz OJ, Floeter SR, Rocha LA, et al (2013) Perspectives for the lionfish invasion in the South Atlantic: are Brazilian reefs protected by the currents? Mar Ecol Progr Ser 485:1–7CrossRefGoogle Scholar
  62. Martinez-Quintana A, Bramanti L, Viladrich N, et al (2015) Quantification of larval traits driving connectivity: the case of Corallium rubrum (L. 1758). Mar Biol 162:309–318CrossRefGoogle Scholar
  63. McCulloch M, Taviani M, Montagna P, et al (2010) Proliferation and demise of deep-sea corals in the Mediterranean during the younger Dryas. Earth Planet Sci Lett 298:143–152CrossRefGoogle Scholar
  64. Mercier A, Hamel JF (2011) Contrasting reproductive strategies in three deep-sea octocorals from eastern Canada: Primnoa resedaeformis; Keratoisis ornata, and Anthomastus grandiflorus. Coral Reefs 30:337−350CrossRefGoogle Scholar
  65. Mercier A, Sun Z, Hamel J-F (2011) Reproductive periodicity, spawning and development of the deep-sea scleractinian coral Flabellum angulare. Mar Biol 158:371–380CrossRefGoogle Scholar
  66. Miller KJ, Gunasekera RM (2017) A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci Rep 7:46103PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miller K, Williams A, Rowden AA, et al (2010) Conflicting estimates of connectivity among deep-sea coral populations. Mar Ecol Evol Perspect 31:144–157CrossRefGoogle Scholar
  68. Millot C (1999) Circulation in the western Mediterranean Sea. J Mar Syst 20:423–442CrossRefGoogle Scholar
  69. Moksnes PO, Corell H, Tryman K, et al (2014) Larval behavior and dispersal mechanisms in shore crab larvae (Carcinus maenas): local adaptations to different tidal environments? Limnol Oceanogr 59:588–602CrossRefGoogle Scholar
  70. Orejas C, López-González PJ, Gili JM, et al (2002) Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticum in the Weddell Sea. Mar Ecol Progr Ser 231:101–114CrossRefGoogle Scholar
  71. Orejas C, Gili JM, López-González PJ, et al (2007) Reproduction patterns of four Antarctic octocorals in the Weddell Sea: an interspecific, shape, and latitudinal comparison. Mar Biol 150:551–563CrossRefGoogle Scholar
  72. Orejas C, Gori A, Iacono CL, et al (2009) CWCs in the cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 397:37–51Google Scholar
  73. Padrón M, Guizien K (2016) Modelling the effect of demographic traits and connectivity on the genetic structuration of marine metapopulations of sedentary benthic invertebrates. ICES J Mar Sci 73:1935–1945CrossRefGoogle Scholar
  74. Palanques A, Durrieu de Madron X, Puig P, et al (2006) Suspended sediment fluxes and transport processes in the Gulf of lions submarine canyons. The role of storms and dense water cascading. Mar Geol 234:43–61CrossRefGoogle Scholar
  75. Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl:S146–S158Google Scholar
  76. Paris CB, Cowen RK (2004) Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol Oceanogr 49:1964–1979CrossRefGoogle Scholar
  77. Paris CB, Chérubin LM, Cowen RK (2007) Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar Ecol Progr Ser 347:285–300CrossRefGoogle Scholar
  78. Paris CB, Helgers J, Van Sebille E, et al (2013) Connectivity modeling system: a probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ Model Softw 42:47–54CrossRefGoogle Scholar
  79. Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol 158:153–173CrossRefGoogle Scholar
  80. Pires DO, Castro CB, Silva JC (2009) Reproductive biology of the deep-sea pennatulacean Anthoptilum murrayi (Cnidaria, Octocorallia). Mar Ecol Progr Ser 397:103–112CrossRefGoogle Scholar
  81. Pires DO, Silva JC, Bastos ND (2014) Reproduction of deep-sea reef-building corals from the southwestern Atlantic. Deep-Sea Res Part 2 Top Stud Oceanogr 99:51–63.  https://doi.org/10.1016/j.dsr2.2013.07.008 CrossRefGoogle Scholar
  82. Ricardo GF, Jones RJ, Nordborg M, et al (2017) Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci Total Environ 609:277–288PubMedCrossRefGoogle Scholar
  83. Rice AL, Tyler PA, Paterson GIL (1992) The Pennatulid Kophobelemnon stelliferum (Cnidaria, Octocorallia) in the porcupine Seabight (north-East Atlantic Ocean). J Mar Biol Assoc UK 72:417–434CrossRefGoogle Scholar
  84. Rogers AD (1999) The biology of Lophelia pertusa (LINNAEUS 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406CrossRefGoogle Scholar
  85. Ross RE, Nimmo-Smith WAM, Howell KL (2017) Towards ‘ecological coherence’: assessing larval dispersal within a network of existing marine protected areas. Deep-Sea Res Part 1 Oceanogr Res Pap 126:128–138CrossRefGoogle Scholar
  86. Rossi V, Ser-Giacomi E, López C, et al (2014) Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys Res Lett 41:2883–2891CrossRefGoogle Scholar
  87. Rossina AM, Waller RG, Försterra G (2017) Reproduction of the cold-water coral Primnoella chilensis (Philippi, 1894). Cont Shelf Res 144:31–37CrossRefGoogle Scholar
  88. Siegel DA, Kinlan BP, Gaylord B, et al (2003) Lagrangian descriptions of marine larval dispersion. Mar Ecol Progr Ser 260:83–96CrossRefGoogle Scholar
  89. Sponaugle S, Cowen RK, Shanks A, et al (2002) Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70:341–375Google Scholar
  90. Strömberg (2016) Early Life History of the Cold-Water Coral Lophelia pertusa – with implications for dispersal. PhD thesis, University of Gothenburg, 53 pGoogle Scholar
  91. Strömberg SM, Larsson AI (2017) Larval behavior and longevity in the cold-water coral Lophelia pertusa indicate potential for long distance dispersal. Front Mar Sci 4:411.  https://doi.org/10.3389/fmars.2017.00411 CrossRefGoogle Scholar
  92. Sun Z, Hamel JF, Mercier A (2009) Planulation of deep-sea octocorals in the NW Atlantic. Coral Reefs 28:781CrossRefGoogle Scholar
  93. Sun Z, Hamel JF, Mercier A (2010a) Planulation periodicity, settlement preferences and growth of two deep-sea octocorals from the Northwest Atlantic. Mar Ecol Progr Ser 410:71–87CrossRefGoogle Scholar
  94. Sun Z, Hamel J-F, Edinger E, et al (2010b) Reproductive biology of the deep-sea octocoral Drifa glomerata in the Northwest Atlantic. Mar Biol 157:863–873CrossRefGoogle Scholar
  95. Swearer SE, Forrester GE, Steele MA, et al (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123CrossRefGoogle Scholar
  96. Taviani M, Angeletti L, Antolini B, et al (2011) Geo-biology of Mediterranean deep-water coral Ecosystems. Marine Research at CNR 6:705–719Google Scholar
  97. Taviani M, Freiwald A, Zibrowius H (2015) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156Google Scholar
  98. Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78.  https://doi.org/10.1016/j.dsr2.2015.12.008 CrossRefGoogle Scholar
  99. Thiem Ø, Ravagnan E, Fosså JH, et al (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219CrossRefGoogle Scholar
  100. Thorrold SR, Jones GP, Hellberg ME, et al (2002) Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull Mar Sci 70:291–308Google Scholar
  101. Torrents O, Garrabou J, Marschal C, et al (2005) Age and size at first reproduction in the commercially exploited red coral Corallium rubrum (L.) in the Marseilles area (France, NW Mediterranean). Biol Conserv 121:391–397CrossRefGoogle Scholar
  102. Treml EA, Halpin PN, Urban DL, et al (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc Ecol 23:19–36CrossRefGoogle Scholar
  103. Treml EA, Roberts JJ, Chao Y, et al (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52:525–537PubMedCrossRefGoogle Scholar
  104. Treml EA, Ford JR, Black KP, et al (2015) Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov Ecol 3:1–16CrossRefGoogle Scholar
  105. Tsounis G, Rossi S, Bramanti L, et al (2013) Management hurdles for sustainable harvesting of Corallium rubrum. Mar Policy 39:361–364CrossRefGoogle Scholar
  106. Tyler PA, Bronsdon SK, Young CM, et al (1995) Ecology and gametogenic biology of the genus Umbellula (Pennatulacea) in the North Atlantic Ocean. Int Rev Gesamten Hydrobiol Hydrograph 80:187−199CrossRefGoogle Scholar
  107. Underwood JN, Smith LD, van Oppen MJH, et al (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784PubMedCrossRefGoogle Scholar
  108. Underwood JN, Smith LD, van Oppen MJH, et al (2009) Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol Appl 19:18–29PubMedCrossRefGoogle Scholar
  109. Verdier-Bonnet C, Carlotti F, Rey C, et al (1997) A model of larval dispersion coupling wind-driven currents and vertical larval behaviour: application to the recruitment of the annelid Owenia fusiformis in Banyuls Bay, France. Mar Ecol Progr Ser 160:217–231CrossRefGoogle Scholar
  110. Waller RG (2005) Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 691–700Google Scholar
  111. Waller RG, Feehan KA (2013) Reproductive ecology of a polar deep-sea scleractinian, Fungiacyathus marenzelleri (Vaughan, 1906). Deep-Sea Res Part 2 Top Stud Oceanogr 92:201–206CrossRefGoogle Scholar
  112. Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic ocean. Coral Reefs 24:514–522CrossRefGoogle Scholar
  113. Waller RG, Tyler PA (2011) Reproductive patterns in two deep-water solitary corals from the north-East Atlantic— Flabellum alabastrum and F. angulare (Cnidaria: Anthozoa: Scleractinia). J Mar Biol Assoc UK 91:669–675CrossRefGoogle Scholar
  114. Waller RG, Tyler PA, Smith CR (2008) Fecundity and embryo development of three Antarctic deep-water scleractinians: Flabellum thouarsii, F. curvatum and F. impensum. Deep-Sea Res Part 2 Top Stud Oceanogr 55:2527–2534CrossRefGoogle Scholar
  115. Ware DM (1975) Relation between egg size, growth, and natural mortality of larval fish. J Fish Board Can 32:2503–2512CrossRefGoogle Scholar
  116. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342PubMedCrossRefGoogle Scholar
  117. Young C, He R, Emlet R, et al (2012) Dispersal of deep-sea larvae from the intra-American seas: simulations of trajectories using ocean models. Integr Comp Biol 52:483–496PubMedCrossRefGoogle Scholar
  118. Zhang Z, Chen Q (2007) Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ 41:5236–5248CrossRefGoogle Scholar

Cross References

  1. Boavida J, Becheler R, Addamo A, et al (this volume) Past, present and future connectivity of Mediterranean cold-water corals: patterns, drivers and fate in a technically and environmentally changing worldGoogle Scholar
  2. Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water coralsGoogle Scholar
  3. Galil BS (this volume) The spread of non-indigenous species in the Mediterranean – a threat to cold-water corals?Google Scholar
  4. Hayes D, Schoeder K, Poulain PM, et al (this volume) Review of the circulation and characteristics of intermediate water masses of the Mediterranean –implications for cold-water coral habitatsGoogle Scholar
  5. Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water coralsGoogle Scholar
  6. Skliris N (this volume) The Mediterranean is getting saltier: from the past to the futureGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Halmos College of Natural Sciences and Oceanography, Guy Harvey Research InstituteNova Southeastern UniversityDania BeachUSA
  2. 2.Department of Marine Sciences, Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden

Personalised recommendations