38 Cold-Water Coral in Aquaria: Advances and Challenges. A Focus on the Mediterranean

Part of the Coral Reefs of the World book series (CORW, volume 9)


Knowledge on basic biological functions of organisms is essential to understand not only the role they play in the ecosystems but also to manage and protect their populations. The study of biological processes, such as growth, reproduction and physiology, which can be approached in situ or by collecting specimens and rearing them in aquaria, is particularly challenging for deep-sea organisms like cold-water corals. Field experimental work and monitoring of deep-sea populations is still a chimera. Only a handful of research institutes or companies has been able to install in situ marine observatories in the Mediterranean Sea or elsewhere, which facilitate a continuous monitoring of deep-sea ecosystems. Hence, today’s best way to obtain basic biological information on these organisms is (1) working with collected samples and analysing them post-mortem and / or (2) cultivating corals in aquaria in order to monitor biological processes and investigate coral behaviour and physiological responses under different experimental treatments. The first challenging aspect is the collection process, which implies the use of oceanographic research vessels in most occasions since these organisms inhabit areas between ca. 150 m to more than 1000 m depth, and specific sampling gears. The next challenge is the maintenance of the animals on board (in situations where cruises may take weeks) and their transport to home laboratories. Maintenance in the home laboratories is also extremely challenging since special conditions and set-ups are needed to conduct experimental studies to obtain information on the biological processes of these animals. The complexity of the natural environment from which the corals were collected cannot be exactly replicated within the laboratory setting; a fact which has led some researchers to question the validity of work and conclusions drawn from such undertakings. It is evident that aquaria experiments cannot perfectly reflect the real environmental and trophic conditions where these organisms occur, but: (1) in most cases we do not have the possibility to obtain equivalent in situ information and (2) even with limitations, they produce relevant information about the biological limits of the species, which is especially valuable when considering potential future climate change scenarios. This chapter includes many contributions from different authors and is envisioned as both to be a practical “handbook” for conducting cold-water coral aquaria work, whilst at the same time offering an overview on the cold-water coral research conducted in Mediterranean laboratories equipped with aquaria infrastructure. Experiences from Atlantic and Pacific laboratories with extensive experience with cold-water coral work have also contributed to this chapter, as their procedures are valuable to any researcher interested in conducting experimental work with cold-water corals in aquaria. It was impossible to include contributions from all laboratories in the world currently working experimentally with cold-water corals in the laboratory, but at the conclusion of the chapter we attempt, to our best of our knowledge, to supply a list of several laboratories with operational cold-water coral aquaria facilities.


Azooxanthellate corals Husbandry Aquaria experimental work Behaviour Ecophysiology Mediterranean Sea 



We acknowledge the following projects for their support to these studies: FP6 HERMES (EC contract no. GOCE-CT-2005-511234), FP7 HERMIONE (Grant agreement No. 226354), CoCoNet (Contract no.287844) programmes, as well as ASSEMBLE TA project (grant agreement no. 227799), Statoil funded CORAMM project, EVER-EST Horizon 2020 project (contract no. 674907), DG Environment programme IDEM (grant agreement No 11.0661 /2017/750680/SUB/EN V.C2), Chaire ‘Extreme environment, biodiversity and global change’ (Foundation TOTAL and UPMC), CoralChange project (contract no. 231109) and the Flag Project Ritmare Ricerca Italiana per il Mare. Further projects are CYCLAMEN funded by the TOTAL foundation (BIO_2014_091_Juin_CS-8), the European Project LIFE Indemares ‘Inventario y designación de la red natura 2000 en áreas marinas del estado español’ (LIFE07/NAT/ E/000732), the Spanish Project DEEP CORAL (CTM2005-07756-C02-02/MAR) and the Acciones Complementarias (CTM2005-24174-E, CTM2006-27063-E/MAR, CTM2007-28758-E/MAR). These works has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 678760 (ATLAS) and No. 689518 (MERCES). This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein. The funds provided by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the strategic project (FCT/UID/MAR/04292/2013) granted to MARE are also acknowledged. This is ISMAR-Bologna scientific contribution n. 1940. We are very grateful to Dr. Ronald Osinga and Dr. Simonepietro Canese who thoughtfully and enthusiastically reviewed this chapter providing such insightful suggestions that would have been rightfull to make co-authors of the chapter.

Some European Research Institutes and Public Aquaria with Aquaria Facilities for Maintenance and/or Experimental Work with CWCs

  • Cyprus

  • Ocean Aquarium. P.O. Box 33845, 5318 Paralimni, Cyprus

  • France

  • Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, 66650 Banyuls-sur-mer, France

  • Germany

  • Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven

  • GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany

  • Italy

  • Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy

  • Acquario di Genova, Ponte Spinola, 16128 Genova GE

  • DISVA, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy

  • Monaco

  • Centre Scientifique de Monaco, Equipe ecophysiologie corallienne, 8 Quai Antoine 1er, MC-98000 Principality of Monaco

  • Norway

  • Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway

  • Portugal

  • IMAR – Institute of Marine Research, University of the Azores, Horta, Portugal & OKEANOS – Center of the University of the Azores Horta, Portugal

  • Spain

  • Acuario do Grove, Punta Moreiras, s/n, 36988 O Grove, Pontevedra

  • Aquarium Finisterrae, Paseo Marítimo Alcalde Francisco Vázquez, 34, 15002 A Coruña, Spain

  • Institut de Ciències del Mar (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain

  • Estación de Investigación Jaume Ferrer, La Mola, 07700 Mahón, Menorca, Illes Balears, Spain

  • Sweden

  • Department of Marine Sciences, University of Gothenburg, Sweden. Field station on Tjärnö, at the west coast of Sweden and at Kristineberg. Both facilities are run by the Sven Lovén Centre for Marine Infrastructure

  • The Netherlands

  • Aquaria facilities in the Wageningen University, Department of Aquaculture and Fisheries, Pots code 338, 6700 AH Wageningen, The Netherlands

  • United Kingdom

  • School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE, UK


  1. Allen JR (1998) Suspension feeding in the brittle-star Ophiothrix fragilis: efficiency of particle retention and implications for the use of encounter-rate models. Mar Biol 132:383–390CrossRefGoogle Scholar
  2. Allers E, Abed RM, Wehrmann LM, et al (2013) Resistance of Lophelia pertusa to coverage by sediment and petroleum drill cuttings. Mar Poll Bull 74:132–140CrossRefGoogle Scholar
  3. Berntsson KM, Jonsson PR, Larsson AI, et al (2004) Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Mar Ecol Prog Ser 275:199–210CrossRefGoogle Scholar
  4. Borneman EH, Lowrie J (2001) Advances in captive husbandry: An easily utilized reef replenishment means from the private sector? Bull Mar Sci 69:897–913Google Scholar
  5. Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Marine Biology 160:139–153CrossRefGoogle Scholar
  6. Brooke S, Young CM (2003) Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa. Cont Shelf Res 23:847–858CrossRefGoogle Scholar
  7. Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675CrossRefGoogle Scholar
  8. Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161CrossRefGoogle Scholar
  9. Brooke S, Holmes M, Young CM (2009) Effects of sediment on two morphotypes of Lophelia pertusa from the Gulf of Mexico. Mar Ecol Prog Ser 390:137–144CrossRefGoogle Scholar
  10. Camilli R, Reddy CM, Yoerger DR, et al (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204. CrossRefPubMedGoogle Scholar
  11. Carreiro-Silva M, Cerqueira T, Godinho A, et al (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476CrossRefGoogle Scholar
  12. Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239CrossRefGoogle Scholar
  13. Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion con- centration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res Part 1 Oceanogr Res Pap 40:2115–2129CrossRefGoogle Scholar
  14. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: Uncovering the mechanism. Oceanography 22:118–127CrossRefGoogle Scholar
  15. Crossland C (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42CrossRefGoogle Scholar
  16. Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186Google Scholar
  17. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  18. de Goeij JM, Moodley L, Houtekamer M, et al (2008) Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: Evidence for DOM-feeding. Limnol Oceanogr 53:1376–1386CrossRefGoogle Scholar
  19. de Goeij JM, van Oevelen D, Vermeij MJA, et al (2013) Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342:108–110CrossRefGoogle Scholar
  20. DeLeo DM, Ruiz-Ramos DV, Baums IB, et al (2016) Response of deep-water corals to oil and chemical dispersant exposure. Deep-Sea Res Part 2 Top Stud Oceanogr 129:137–147CrossRefGoogle Scholar
  21. Dodds LA, Roberts JM, Taylor AC, et al (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214CrossRefGoogle Scholar
  22. Dodds LA, Black KD, Orr H, et al (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124CrossRefGoogle Scholar
  23. Fisher CR, Hsing P-Y, Kaiser CL, et al (2014) Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proc Natl Acad Sci 111: 11744–11749. CrossRefGoogle Scholar
  24. Fox AD, Henry LA, Corne DW, et al (2016) Sensitivity of marine protected area network connectivity to atmospheric variability. Roy Soc Open Sci 3:160494CrossRefGoogle Scholar
  25. Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Mar Poll Bull 52:549–559CrossRefGoogle Scholar
  26. Georgian SE, Dupont S, Kurman M, et al (2016a) Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar Ecol 37:1345–1359. CrossRefGoogle Scholar
  27. Georgian SE, Deleo D, Durkin A, et al (2016b) Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: Implications for resilience in a changing ocean. Limnol Oceanogr 61:648–665. CrossRefGoogle Scholar
  28. Gori A, Reynaud S, Orejas C, et al (2014a) Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preferences for temperate environments. Coral Reefs 33:665–674CrossRefGoogle Scholar
  29. Gori A, Grover R, Orejas C, et al (2014b) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 99:42–50CrossRefGoogle Scholar
  30. Gori A, Reynaud S, Orejas C, et al (2015) The influence of flow velocity and temperature on zooplankton capture rates by the cold-water coral Dendrophyllia cornigera. J Exp Mar Bio Ecol 466:92–97CrossRefGoogle Scholar
  31. Gori A, Ferrier-Pagès C, Hennige SJ, et al (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. Peer J 4:e1606PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hennige SJ, Wicks LC, Kamenos NA, et al (2014) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Part 2 Top Stud Oceanogr 99:27–35CrossRefGoogle Scholar
  33. Hennige SJ, Wicks LC, Kamenos NA, et al (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B 282:20150990CrossRefGoogle Scholar
  34. Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226CrossRefGoogle Scholar
  35. Holdway DA (2002) The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes. Mar Poll Bull 44:185–203CrossRefGoogle Scholar
  36. Hunter T (1989) Suspension feeding in oscillating flow – the effect of colony morphology and flow regime on plankton capture by the hydroid Obelia longissima. Biol Bull 176:41–49CrossRefGoogle Scholar
  37. Järnegren J, Brooke S, Jensen H (2017) Effects of drill cuttings on larvae of the cold-water coral Lophelia pertusa. Deep-Sea Res Part 2 Top Stud Oceanogr 137:454–462CrossRefGoogle Scholar
  38. Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Coral reefs: research methods. UNESCO, Paris, pp 529–541Google Scholar
  39. Jonsson PR, Johansson M (1997) Swimming behaviour, patch exploitation and dispersal capacity of a marine benthic ciliate in flume flow. J Exp Mar Biol Ecol 215:135–153CrossRefGoogle Scholar
  40. Kaniewska P, Campbell PR, Kline DI, et al (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7:e34659PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kooijman S (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282CrossRefGoogle Scholar
  42. Kurman MD, Gomez CE, Georgian SE, et al (2017) Intra-specific variation reveals potential for adaptation to ocean acidification in a cold-water coral from the Gulf of Mexico. Front Mar Sci 4:111. CrossRefGoogle Scholar
  43. Larsson AI, Jonsson PR (2006) Barnacle larvae actively select flow environments supporting post-settlement growth and survival. Ecology 87:1960–1966PubMedCrossRefPubMedCentralGoogle Scholar
  44. Larsson AI, Purser A (2011) Sedimentation on the cold-water coral Lophelia pertusa: Cleaning efficiency from natural sediments and drill cuttings. Mar Poll Bull 62:1159–1168CrossRefGoogle Scholar
  45. Larsson AI, Lundälv T, van Oevelen D (2013a) Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Mar Ecol Prog Ser 483:169–184CrossRefGoogle Scholar
  46. Larsson AI, van Oevelen D, Purser A, et al (2013b) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar Poll Bull 70:176–188CrossRefGoogle Scholar
  47. Larsson AI, Järnegren J, Strömberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PloS One 9:e102222PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lartaud F, Pareige S, de Rafelis M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196CrossRefGoogle Scholar
  49. Lartaud F, Pareige S, de Rafelis M, et al (2014) Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Res Part 2 Top Stud Oceanogr 99:64–70Google Scholar
  50. Lartaud F, Meistertzheim AL, Peru E, et al (2017a) In situ growth experiments of reef-building cold-water corals: the good, the bad and the ugly. Deep-Sea Res Part 1 Oceanogr Res Pap 121:70–78CrossRefGoogle Scholar
  51. Lartaud F, Galli G, Raza A, et al (2017b) Growth patterns in long-lived coral species. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forest: The Ecology of Benthic Biodiversity Hotspots. Springer, Cham, pp 595–626Google Scholar
  52. Lasker HR (1988) The incidence and rate of vegetative propagation among coral reef alcyonarians. In: Proceedings of the 6th international coral reef symposium, vol 2, Australia, pp 763–768Google Scholar
  53. Leal MC, Ferrier-Pagès C, Petersen D, et al (2016) Coral aquaculture: applying scientific knowledge to ex situ production. Rev Aquacult 8:136–153CrossRefGoogle Scholar
  54. Levington J (1972) Stability and trophic structure in deposit feeding and suspension feeding communities. Am Nat 106:472–486CrossRefGoogle Scholar
  55. Lundälv T (2003) Kartläggning av marina habitat i Yttre Hvaler, nordöstra Skagerrak. En pilotstudie. Rapport till Fylkesmannen i Østfold och Nordiska Ministerrådet, 16 pGoogle Scholar
  56. Lunden JJ, Georgian SE, Cordes EE (2013) Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol Oceanogr 58:354–362. CrossRefGoogle Scholar
  57. Lunden JJ, Turner JM, Mcnicholl CG, et al (2014a) Design, development, and implementation of recirculating aquaria for maintenance and experimentation of deep-sea corals and associated fauna. Limnol Oceanogr Methods 12:363–372. CrossRefGoogle Scholar
  58. Lunden JJ, McNicholl CG, Sears CR, et al (2014b) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:1–12. CrossRefGoogle Scholar
  59. Maier C (2008) High recovery potential of the cold-water coral Lophelia pertusa. Coral Reefs 27:821–821CrossRefGoogle Scholar
  60. Maier C, Soest Rv, Hühnerbach V, et al (2006) Biology and ecosystem functioning of cold water coral bioherms at Mingulay, NE Atlantic. Cruise Report R/V Pelagia, cruise 64PE250, 63 pp.
  61. Maier C, Weinbauer MG, Soest RV, et al (2007) Sponge diversity in cold water coral bioherms and calcification rate and prokaryote-coral associations of Lophelia pertusa (Skagerrak, North Sea). Cruise Report R/V Pelagia, cruise 64PE263, 30 pp.
  62. Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680CrossRefGoogle Scholar
  63. Maier C, Kluijver A, Agis M, et al (2011) Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals. Biogeosciences 8:2609–2620CrossRefGoogle Scholar
  64. Maier C, Watremez P, Taviani M, et al (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc B 279:1716–1723PubMedPubMedCentralCrossRefGoogle Scholar
  65. Maier C, Bils F, Weinbauer MG, et al (2013a) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:5671–5680CrossRefGoogle Scholar
  66. Maier C, Schubert A, Sanchez MMB, et al (2013b) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PloS One 8:e62655PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maier C, Popp P, Sollfrank N, et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208–3217PubMedCrossRefGoogle Scholar
  68. Maier S, Kutti T, Bannister RJ, van Breugel P, van Rijswijk P, van Oevelen D (in press) Survival under conditions of variable food availability: resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol Oceanogr. CrossRefGoogle Scholar
  69. Martin P, Goodkin NF, Stewart JA, et al (2016) Deep-sea coral d13C: A tool to reconstruct the difference between seawater pH and d11B-derived calcification site pH. Geophy Res Lett 43:299–308Google Scholar
  70. McCulloch M, Trotter J, Montagna P, et al (2012) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  71. Meistertzheim AL, Lartaud F, Arnaud-Haond S, et al (2016) Patterns of bacteria- host associations suggest different ecological strategies between two reef building cold-water coral species. Deep-Sea Res Part 1 Oceanogr Res Pap 114:12–22CrossRefGoogle Scholar
  72. Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371CrossRefGoogle Scholar
  73. Middelburg JJ, Barranguet C, Boschker HTS, et al (2000) The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234CrossRefGoogle Scholar
  74. Middelburg JJ, Mueller CE, Veuger B, et al (2015) Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci Rep 5:9.
  75. Miller K (1996) Piecing together the reproductive habits of New Zealand’s endemic black corals. Water Atmos 4:18–19Google Scholar
  76. Moeller EF (2005) Sloppy feeding in marine copepods: Prey-size-dependent production of dissolved organic carbon. J Plankton Res 27:27–35CrossRefGoogle Scholar
  77. Moodley L, Boschker HTS, Middelburg JJ, et al (2000) Ecological significance of benthic foraminifera: 13C labelling experiments. Mar Ecol Prog Ser 202:289–295CrossRefGoogle Scholar
  78. Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (scleractinia) and selected associated invertebrates. Ophelia 54:83–104CrossRefGoogle Scholar
  79. Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthoza, Scleractinia) implications for determination of linear extension rates. Sarsia 83:433–446CrossRefGoogle Scholar
  80. Movilla J, Gori A, Calvo E, et al (2014a) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 6:59–67CrossRefGoogle Scholar
  81. Movilla J, Orejas C, Calvo E, et al (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686CrossRefGoogle Scholar
  82. Moya A, Huisman L, Ball EE, et al (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454PubMedCrossRefPubMedCentralGoogle Scholar
  83. Mueller CE, Lundälv T, Middelburg JJ, et al (2013) The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. PLoS One 8:1–9CrossRefGoogle Scholar
  84. Mueller CE, Larsson AI, Veuger B, et al (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133CrossRefGoogle Scholar
  85. Naumann MS, Orejas C, Wild C, et al (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576PubMedPubMedCentralCrossRefGoogle Scholar
  86. Naumann M, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs:1–6Google Scholar
  87. Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41CrossRefGoogle Scholar
  88. Olariaga A, Gori A, Orejas C, Gili JM (2009) Development of an autonomous Aquarium system for maintaining deep corals. Oceanography 22:44–45CrossRefGoogle Scholar
  89. Orejas C, Gili JM, López-González PJ, et al (2001) Feeding strategies and diet composition of four Antarctic cnidarian species. Pol Biol 24:620–627CrossRefGoogle Scholar
  90. Orejas C, Gili JM, Arntz W (2003) Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar Ecol Prog Ser 250:105–116CrossRefGoogle Scholar
  91. Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255CrossRefGoogle Scholar
  92. Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Prog Ser 429:57–65CrossRefGoogle Scholar
  93. Orejas C, Gori A, Rad-Menéndez C, et al (2016) The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J Exp Mar Bio Ecol 481:34–40CrossRefGoogle Scholar
  94. Orejas C, Gori A, Jiménez C, et al (2017) First in situ documentation of a population of the coral Dendrophyllia ramea off Cyprus (Levantine Sea) and evidence of human impacts. Galaxea J Coral Reef Studies 19:15–16Google Scholar
  95. Perez FF, Fraga F (1987) A precise and rapid analytical procedure for alkalinity determination. Mar Chem 21:169–182CrossRefGoogle Scholar
  96. Pérez FF, Rios AF, Rellán T, et al (2000) Improvements in a fast potentiometric seawater alkalinity determination. Ciencias Mar 26:463–478CrossRefGoogle Scholar
  97. Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149CrossRefGoogle Scholar
  98. Purser A, Larsson AI, Thomsen L, et al (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Bio Ecol 395:55–62CrossRefGoogle Scholar
  99. Reynaud S, Leclercq N, Romaine-Lioud S, et al (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668CrossRefGoogle Scholar
  100. Richter C, Wunsch M, Rasheed M, et al (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730PubMedCrossRefPubMedCentralGoogle Scholar
  101. Rix L, Naumann MS, de Goeij JM, et al (2016) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci Rep 6:18715
  102. Robbins LL, Hansen ME, Kleypas JA, et al (2010) CO2calc – a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): US Geological Survey Open-File Report. 2010–1280, 17 ppGoogle Scholar
  103. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  104. Roberts JM, Murray F, Anagnostou E, et al (2016) Cold-water corals in an era of rapid global change: are these the deep ocean’s most vulnerable ecosystems? In Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer, Cham, pp 53–606CrossRefGoogle Scholar
  105. Roik A, Rothig T, Roder C, et al (2015) Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity. PeerJ 3:e734PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sampaio Í, Braga-Henriques A, Pham C, et al (2012) Cold-water corals landed by bottom longline fisheries in the Azores (north eastern Atlantic). J Mar Biol Assoc UK 92:1547–1555CrossRefGoogle Scholar
  107. Schöne BR (2008) The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Mar Lett 28:269–285CrossRefGoogle Scholar
  108. Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28CrossRefGoogle Scholar
  109. Shelton GAB (1980) Lophelia pertusa (L.): Electrical conduction and behaviour in a deep-water coral. J Mar Biol Ass UK 60:517–528CrossRefGoogle Scholar
  110. Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, Seattle, 670 pGoogle Scholar
  111. Strömberg SM (2016) Early life history of the cold-water coral Lophelia pertusa – with implications for dispersal. Thesis. University of Gothenburg, 53 pp.
  112. Strömberg SM, Larsson AI (2017) Larval behavior and longevity in the cold-water coral Lophelia pertusa indicate potential for long-distance dispersal. Front Marine Sci 4(411).
  113. Strömberg SM, Östman C (2016) The cnidome and internal morphology of Lophelia pertusa (Linnaeus, 1758) (Cnidaria, Anthozoa). Acta Zool 92:191–213Google Scholar
  114. Tambutté E, Allemand D, Bourge I, et al (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459Google Scholar
  115. Taviani M, Angeletti L, Antolini B, et al (2011) Geo-biology of Mediterranean deep-water coral ecosystems. In: Brugnoli E, Cavarretta G, et al (eds) Marine research at CNR, Dipartimento Terra e Ambiente. Consiglio Nazionale delle Ricerche, Roma, pp 705–720Google Scholar
  116. Tengberg A, Almroth E, Hall P (2003) Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology. J Exp Mar Biol Ecol 285–286:119–142CrossRefGoogle Scholar
  117. Tengberg A, Stahl H, Gust G, et al (2004) Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progr Oceanogr 60:1–28CrossRefGoogle Scholar
  118. Tsounis G, Orejas C, Reynaud S, et al (2010) Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Prog Ser 398:149–155CrossRefGoogle Scholar
  119. Twan WH, Hwang JS, Lee YH, et al (2006) Hormones and reproduction in scleractinian corals. Comp Bioch Physiol Part A 144:247–253CrossRefGoogle Scholar
  120. van Duyl F, Duineveld G (2005) Biodiversity, ecosystem functioning and food web complexity of deep water coral reefs in the NE Atlantic (Rockall Bank and Porcupine Bank). Cruise report, R/V Pelagia, cruise 64PE238, 96 pp. http://www.nioznl/public/dmg/rpt/crs/64pe238pdf
  121. van Duyl FC, Hegeman J, Hoogstraten A, et al (2008) Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar Ecol Prog Ser 358:137–150CrossRefGoogle Scholar
  122. van Oevelen D, Mueller CE, Lundalv T, et al (2016) Food selectivity and processing by the cold-water coral Lophelia pertusa. Biogeosciences 13:5789–5798CrossRefGoogle Scholar
  123. Vidal-Dupiol J, Zoccola D, Tambutté E, et al (2013) Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals:new insights from transcriptome analysis. PLoS One 8:e58652PubMedPubMedCentralCrossRefGoogle Scholar
  124. Weinbauer M, Ogier J, Maier C (2012) Microbial abundance in the coelenteron and mucus of the cold-water coral Lophelia pertusa and in bottom water of the reef environment. Aquat Biol 16:209–216CrossRefGoogle Scholar
  125. White HK, Hsing P-Y, Cho W, et al (2012) Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc Nat Acad Sci 109:20303–20308PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wijgerde T, Spijkers P, Karruppannan E, et al (2012) Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularison a polyp and colony level. J Mar Biol 2012:1–7CrossRefGoogle Scholar
  127. Wild C, Mayr C, Wehrmann L, et al (2008) Organic matter release by cold water corals and its implication for fauna-microbe interaction. Mar Ecol Prog Ser 372:67–75CrossRefGoogle Scholar
  128. Zetsche EM, Baussant T, Meysman FJR, et al (2016) Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS One 11:1–17CrossRefGoogle Scholar

Cross References

  1. Lartaud F, Mouchi V, Chapron L, et al (this volume) Growth patterns of Mediterranean calcifying cold-water coralsGoogle Scholar
  2. Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesisGoogle Scholar
  3. Montagna P, Taviani M (this volume) Mediterranean cold-water corals as paleoclimate archivesGoogle Scholar
  4. Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidificationGoogle Scholar
  5. Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water coralsGoogle Scholar
  6. Rossi S, Orejas C (this volume) Approaching cold-water corals to the society: novel ways to transfer knowledgeGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Español de Oceanografía (IEO)Centro Oceanográfico de BalearesPalma de MallorcaSpain
  2. 2.Institute of Marine Sciences (ISMAR-CNR)BolognaItaly
  3. 3.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  4. 4.Stazione Zoologica Anton DohrnNaplesItaly
  5. 5.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  6. 6.Enalia Physis Environmental Research Centre (ENALIA)NicosiaCyprus
  7. 7.IMAR – Institute of Marine ResearchUniversity of the AzoresHortaPortugal
  8. 8.MARE – Marine and Environmental Sciences CentreHortaPortugal
  9. 9.OKEANOS – Center of the University of the AzoresHortaPortugal
  10. 10.Università degli Studi di GenovaGenovaItaly
  11. 11.Florida State University Coastal and Marine LaboratorySt. TeresaUSA
  12. 12.Institute of Marine ResearchBergenNorway
  13. 13.Biology Life Sciences BuildingTemple UniversityPhiladelphiaUSA
  14. 14.Département de Biologie Marine, Equipe d’EcophysiologieCentre Scientifique de MonacoMonacoMonaco
  15. 15.Aquarium FinisterraeA CoruñaSpain
  16. 16.University of Edinburgh, School of GeosciencesEdinburghUK
  17. 17.Enalia Physis Environmental Research Centre (ENALIA)NicosiaCyprus
  18. 18.Energy, Environment and Water Research Centre (EEWRC) of The Cyprus InstituteNicosiaCyprus
  19. 19.Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
  20. 20.Sorbonne Université, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques, LECOB, Observatoire OcéanologiqueBanyuls-sur-merFrance
  21. 21.Laboratoire d’Océanographie de Villefranche (LOV),Villefranche-sur-MerFrance
  22. 22.Royal Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands
  23. 23.Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume FerrerMenorcaSpain
  24. 24.Instituto de Ciencias del Mar (ICM-CSIC)BarcelonaSpain
  25. 25.Alfred Wegener Institute, Helmholts zentrum für Polar und MeeresforschungBremerhavenGermany
  26. 26.C/ Alcalde de Mostoles 5, entloBarcelonaSpain
  27. 27.Jacobs UniversityBremenGermany

Personalised recommendations