Skip to main content

2 Paleoecology of Mediterranean Cold-Water Corals

  • Chapter
  • First Online:
Book cover Mediterranean Cold-Water Corals: Past, Present and Future

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

Atlantic-type scleractinian cold-water corals occur in the Quaternary of the Mediterranean basin. Most fossil evidence on-land is Early Pleistocene in age, and occurs in peninsular Italy, Sicily and on some Greek islands, whilst submerged situations are by large late Pleistocene. According to circumstances, the mode of preservation of fossil cold-water coral varies sensibly (from loose corals to micritic limestones) what affects the level of confidence of the paleoecological reconstruction. All known situations point about a bathyal setting for such cold-water coral hosting deposits in the Mediterranean basin, but under many respects the geological record of cold-water coral paleoenvironments is yet largely underworked. Research developments are discussed, with special emphasis on the widespread submarine occurrences which prevail over the on-land cold-water coral legacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addamo AM, Vertino A, Stolarski J, et al (2016) Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16:1–17. https://doi.org/10.1186/s12862-016-0654-8

    Article  CAS  Google Scholar 

  • Adkins JF, Cheng H, Boyle EA, et al (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280:725–728

    CAS  PubMed  Google Scholar 

  • Ager DV (1963) Principles of Palaeoecology. McGraw-Hill, New York

    Google Scholar 

  • Allmon W, Bottjer DJ (eds) (2001) Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York, Chichester, p 320

    Google Scholar 

  • Allouc J (1987) Les paléocommunautés profondes sur fond rocheux du Pléistocène méditerranéen. Description et essai d’interpretation paléoécologique. Geobios 20:241–263

    Article  Google Scholar 

  • Allouc J (1990) Quaternary crusts on slopes of the Mediterranean Sea: a tentative explanation for their genesis. Mar Geol 94:351–376

    Article  Google Scholar 

  • Angeletti L, Taviani M (2011) Entrapment, preservation and incipient fossilization of benthic predatory molluscs within deep-water coral frames in the Mediterranean Sea. Geobios 44:543–548

    Article  Google Scholar 

  • Angeletti L, Taviani M, Canese S, et al (2014) New deep-water cnidarian sites in the southern Adriatic Sea. Medit Mar Sci 15:225–238

    Article  Google Scholar 

  • Armstrong CW, Foley NS, Kahuic V, et al (2014) Cold-water coral reef management from an ecosystem service perspective. Mar Policy 50:126–134

    Article  Google Scholar 

  • Ayers MW, Pilkey OH (1981) Piston cores and surficial sediment investigations of the Florida-Hatteras slope and inner Blake plateau. In: Popenoe P (ed) Environmental geologic studies on the southeastern Atlantic outer continental shelf, USGS open file report 81-582-A, pp 5-1–5-89

    Google Scholar 

  • Bargain A, Marchese F, Savini A, et al (2017) Santa Maria di Leuca Province (Mediterranean Sea): identification of suitable mounds for cold-water coral settlement using geomorphometry proxies and Maxent methods. Front Mar Sci 4:338. https://doi.org/10.3389/fmars.2017.00338

    Article  Google Scholar 

  • Bargain A, Foglini F, Pairaud I, et al (2018) Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Progr Ocean 169:151–168

    Article  Google Scholar 

  • Barrier P, Di Geronimo I, Zibrowius H (1985) Sezione plio-pleistocenica della Montagna. Guida alle escursioni. 3° Simposio di Ecologia e Paleoecologia delle Comunità Bentoniche, 3 pp

    Google Scholar 

  • Barrier P, Di Geronimo I, Lanzafame G (1986) I rapporti tra tettonica e sedimentazione nellʼevoluzione recente dellʼAspromonte occidentale (Calabria). Riv Ital Paleontol S 91:537–556

    Google Scholar 

  • Barrier P, Di Geronimo I, Montenat C, et al (1989) Présence de faunes bathyales atlantiques dans le Pliocène et le Pléistocène de Méditerranée (détroit de Messine, Italie). B Soc Geol Fr 5:787–796

    Google Scholar 

  • Barrier P, Di Geronimo I, Zibrowius H, et al (1990) Faune Sénégalienne du paléoescarpement du Capo Vaticano (Calabre Meridionale). Implications néotectoniques. Atti IV Simp Ecol Paleoecol Com Bent Sorrento 1–5 Novembre 1988:511–526

    Google Scholar 

  • Barrier P, Zibrowius H, Lozouet P, et al (1992) Une faune de fond dur du bathyal supérieur dans le Miocène terminal des Cordillères Bétiques (Carboneras, SE, Espagne). Mésogée 51:3–13

    Google Scholar 

  • Barrier P, Di Geronimo I, La Perna R, et al (1996) Taphonomy of deep-sea hard and soft bottom communities: the Pleistocene of Lazzàro (Southern Italy). In: Meléndez Hevia G, Blasco Sancho MF, Pérez Urresti I (eds) Com II Reun Tafon Fosiliz, Zaragoza 13–15 Jun, pp 39–45

    Google Scholar 

  • Bellaiche C, Gennesseaux M, Mauffret A, et al (1974) Prélèvements systématiques et caractérisation des réflecteurs acoustiques: nouvelle étape dans la conpréhension de la géologie de la Méditerranée occidentale. Mar Geol 16:M47–M56

    Article  Google Scholar 

  • Bernoulli D, Mc Kenzie J (1981) Hardground formation in the Hellenic trench: penesaline to hypersaline marine carbonate diagenesis. In: Dercourt J (ed) Programme HEAT, Campagne submersible, les fossée helléniques, 19 aout-15 septembre 1979, Publ CNEXO: Rès Camp Mer 23, pp 197

    Google Scholar 

  • Beu AG, Climo FM (1974) Mollusca from a recent coral community in Palliser Bay, Cook Strait. N Z J Mar Freshw Res 8:302–332

    Article  Google Scholar 

  • Beuck L, Freiwald A, Taviani M (2010) Spatio-temporal bioerosion patterns in deep-water scleractinians from off Santa Maria di Leuca (Apulia, Ionian Sea). Deep-Sea Res Part 2 Top Stud Oceanogr 57:458–470

    Article  Google Scholar 

  • Beuck L, Vertino A, Stepina E, et al (2007) Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53:157–176

    Article  Google Scholar 

  • Biju-Duval B, Morel Y, Baudrimont A, et al (1983) Examples de sedimentation condensée sur les escarpements de la Mer Ionienne (Méditerranée orientale), Observations a partir sui submersible “Cyana”. Rev INFP 38:427–438

    Google Scholar 

  • Birks HJB (1985) Recent and possible future mathematical developments in quantitative palaeoecology. Palaeogeogr Paleoclim Palaeoecol 50:107–147

    Article  Google Scholar 

  • Birks HJB (2008) Palaeoecology. In: Jørgensen SE (ed) Encyclopedia of ecology. Elsevier, Oxford, p 2623

    Chapter  Google Scholar 

  • Blanc JJ, Pérès JM, Picard J (1959) Coraux profonds et thanatocoenoses quaternaires en Méditerranée In: La Topographie et la géologie des profondeurs océaniques. Coll Int CNRS 83:185

    Google Scholar 

  • Brenchley PJ, Harper DAT (1998) Palaeoecology: ecosystems, environments and evolution. xxv + 402 pp. Chapman & Hall, London/Weinheim/New York/Tokyo/Melbourne/Madras

    Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 895–914

    Google Scholar 

  • Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322

    Google Scholar 

  • Cairns SD, Stanley GD Jr (1981) Ahermatypic coral banks: living and fossil couterparts. Proc 4th Int Coral Reef Symp Manila 1:611–618

    Google Scholar 

  • Cita MB, Fantini Sestini N, Salvatorini G, et al (1979) Late Neogene sediments and fossils from the Malta escarpment and their geodynamic significance. Ann Géol Pays Hellen 1:273–283

    Google Scholar 

  • Colella A, D’Alessandro A (1988) Sand waves, Echinocardium traces and their bathyal depositional setting (Monte Torre Paleostrait, Plio-Pleistocene, southern Italy). Sedimentology 35:219–237

    Article  Google Scholar 

  • Comas M, Pinheiro LM, Ivanov M, et al (2009) Deep-water coral mounds in the Alboran Sea: the Melilla mound field revisited, IOC workshop report 220. UNESCO, Paris, pp 8–9

    Google Scholar 

  • Conti MA, De Girasoli DE, Frezza V, et al (2013) Repeated events of hardground formation and colonisation by endo-epilithozoans on the sediment-starved Pontine continental slope (Tyrrhenian Sea, Italy). Mar Geol 336:184–197

    Article  CAS  Google Scholar 

  • Corselli C (2001) Change and diversity: the Mediterranean deep corals from the Miocene to the present. In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean ecosystems: structures and processes. Springer, Genova, pp 361–366

    Chapter  Google Scholar 

  • Corselli C (ed) (2010) The APLABES programme: physical, chemical and biological characterization of deep-water coral ecosystems from the Ionian Sea (Mediterranean). Deep-Sea Res Part 2 Top Stud Oceanogr 57:323–325

    Google Scholar 

  • Delibrias G, Taviani M (1985) Dating the death of Mediterranean deep-sea scleractinian corals. Mar Geol 62:175–180

    Article  Google Scholar 

  • Di Geronimo I (1979) Il Pleistocene in facies batiale di Valle Palione (Grammichele, Catania). Boll Malacol 15:85–156

    Google Scholar 

  • Di Geronimo I (1987) Bionomie des peuplements benthiques des substrats meubles et rocheux plio-quaternaires du Détroit de Messine. Doc Trav IGAL 11:153–169

    Google Scholar 

  • Di Geronimo I, Messina C, Rosso A, et al (2005) Enhanced biodiversity in the deep: early Pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 61–86

    Google Scholar 

  • Di Stefano A, Longhitano SG (2009) Tectonics and sedimentation of the lower and middle Pleistocene mixed siliciclastic/bioclastic sedimentary successions of the Ionian Peloritani Mts (NE Sicily, southern Italy): the onset of opening of the Messina Strait. Cent Eur J Geosci 1:33–62

    Google Scholar 

  • Dorschel B, Hebbeln D, Rüggeberg A, et al (2005) Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the late Pleistocene and Holocene. Earth Planet Sci Lett 233:33–44

    Article  CAS  Google Scholar 

  • Douarin M, Elliot M, Noble SR, et al (2013) Growth of north-East Atlantic cold-water coral reefs and mounds during the Holocene: a high resolution U-series and 14C chronology. Earth Planet Sci Lett 375:176–187

    Article  CAS  Google Scholar 

  • Douarin M, Sinclair DJ, Elliot M, et al (2014) Changes in fossil assemblage in sediment cores from Mingulay reef complex (NE Atlantic): implications for coral reef build-up. Deep-Sea Res Part 2 Top Stud Oceanogr 99:286–296

    Article  Google Scholar 

  • Dubois-Dauphin Q, Montagna P, Siani G, et al (2017) Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals. Clim Past 13:17–37

    Article  Google Scholar 

  • Dullo W-C (1987) The role of microarchitecture and microstructure in the preservation of taxonomic closely related scleractinians. Facies 16:11–22

    Article  Google Scholar 

  • Eisele M, Hebbeln D, Wienberg C (2008) Growth history of a cold-water coral covered carbonate mound – Galway Mound, Porcupine Seabight, NE-Atlantic. Mar Geol 253:160–169

    Article  Google Scholar 

  • Emig CC, Geistdoerfer P (2004) The Mediterranean deep-sea fauna: historical evolution, bathymetric variations and geographical changes. Carnets de Géologie/Notebooks on Geology, Maintenon, Article 2004/01

    Google Scholar 

  • Färber C, Titschack J, Schönberg CHL, et al (2016) Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography. Biogeosciences 13:3461–3474

    Article  Google Scholar 

  • Ferdelman TG, Kano A, Williams T, et al (2006a) IODP expedition 307 drills cold-water coral mound along the Irish continental margin. Science reports. Sci Drill 2(March 2006):11–16. https://doi.org/10.2204/iodp.sd.2.02.2006

    Article  Google Scholar 

  • Ferdelman TG, Kano A, Williams T, et al (2006b) Proceedings of the integrated ocean drilling program 307, Washington, DC, Integrated Ocean Drilling Program Management International, Inc. https://doi.org/10.2204/iodp.proc.307.2006

  • Fink HG, Wienberg C, Hebbeln D (2012) Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96

    Article  CAS  Google Scholar 

  • Fink HG, Wienberg C, De Pol-Holz R, et al (2013) Cold-water coral growth in the Alboran Sea related to high productivity during the late Pleistocene and Holocene. Mar Geol 339:71–82

    Article  Google Scholar 

  • Fink HG, Wienberg C, De Pol-Holz R, et al (2015) Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res Part 1 Oceanogr Res Pap 103:37–48

    Article  Google Scholar 

  • Fois E (1990) Stratigraphy and palaeogeography of the capo Milazzo area (NE Sicily, Italy): clues to the evolution of the southern margin of the Tyrrhenian Basin during the Neogene. Palaeogeogr Paleoclim Palaeoecol 78:87–108

    Article  Google Scholar 

  • Försterra, Beuck L, Häussermn V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds). Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 937–977

    Google Scholar 

  • Foubert A, Henriet JP (2009) Nature and significance of the recent carbonate mound record. Lect Notes Earth Sci 126

    Google Scholar 

  • Frank N, Ricard E, Lutringer-Paquet A, et al (2009) The Holocene occurrence of cold-water corals in the NE Atlantic: implications for coral carbonate mound evolution. Mar Geol 266:129–142

    Article  Google Scholar 

  • Frank N, Freiwald A, López Correa M, et al (2011a) Northeastern Atlantic cold-water coral reefs and climate. Geology 39:743–746

    Article  Google Scholar 

  • Frank T, Titschack J, Thierens M (2011b) Aragonite loss in a cold-water coral mound: mechanisms and implications. Sedimentology 58:670–690

    Article  Google Scholar 

  • Frank N, Paterne M, Ayliffe L, et al (2004) Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ 14C during the Holocene. Earth Planet Sci Lett 219:297–309

    Article  CAS  Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals Ocean margin systems. Springer, Berlin, Heidelberg, 365 pp

    Chapter  Google Scholar 

  • Freiwald A, Schönfeld J (1996) Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (foraminifera) in a modem deep-water coral reef mound. Mar Micropal 28:199–207

    Article  Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13:37–52

    Article  Google Scholar 

  • Freiwald A, Hühnerbach V, Lindberg B, et al (2002) The Sula reef complex, Norwegian shelf. Facies 47:179–200

    Article  Google Scholar 

  • Freiwald A, Fosså JH, Grehan A, et al (2004) Cold-water coral reefs, UNEP-WCMC Biodiversity Series 22. UNEP-WCMC, Cambridge, 86 pp

    Google Scholar 

  • Freiwald A, Beuck L, Rüggeberg A, et al (2009) The white coral community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74

    Article  Google Scholar 

  • Freiwald A, Boetius A, Bohrmann G (2011) Deep water ecosystems of the eastern Mediterranean, Cruise No. 70, Leg 1–3, September 24–December 8, 2006, La Valetta (Malta) – Heraklion (Greece). METEOR-Berichte, 11–5. Leitstelle Deutsche Forschungsschiffe Institut für Meereskunde der Universität Hamburg

    Google Scholar 

  • Freudenthal T, Wefer G (2007) Scientific drilling with the sea floor drill rig MeBo. Sci Drill 5:63–66

    Article  Google Scholar 

  • Gamberi F, Marani M, Landuzzi V (2006) Sedimentologic and volcanologic investigation of the deep Tyrrhenian sea: preliminary result of cruise VST02. Ann Geophys 49:767–781

    Google Scholar 

  • Hanken N-M, Bromley RG, Miller J (1996) Plio–Pleistocene sedimentation in coastal grabens, north-East Rhodes, Greece. Geol J 31:271–296

    Article  Google Scholar 

  • Hebbeln D, Wienberg C, Beuck L, et al (2008) Report and preliminary results of RV Pelagia cruise 64PE284. Cold-water corals in the Gulf of Cádiz and on coral patch seamount (NE Atlantic). Portimão – Portimão, 18.02. 09.03.2008. Berichte, Fachbereich Geowissenschaften, Universität Bremen 265, Bremen:1–90

    Google Scholar 

  • Hebbeln D, Wienberg C, Beuck L, et al (2009) Report and preliminary results of RV POSEIDON cruise POS 385 “cold-water corals of the Alboran Sea (western Mediterranean Sea)”, Faro – Toulon, May 29–June 16, 2009. Berichte, Fachbereich Geowissenschaften, Universität Bremen 273, Bremen: 1–79

    Google Scholar 

  • Henriet JP, Spezzaferri S, Samankassou E, et al (2011) Carbonate mounds in shallow and deep time. Mar Geol 282:1–4

    Article  Google Scholar 

  • Henry LA, Roberts JM (2017) Global biodiversity in cold-water coral reef ecosystems. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 235–256. https://doi.org/10.1007/978-3-319-17001-5_6-1

    Google Scholar 

  • Hersey JB (1965) Sedimentary basins of the Mediterranean Sea. Colston Pap 17:75–91

    Google Scholar 

  • Hunter JP (1998) Paleoecology meets ecology on questions of scale. Trend Ecol Evol 13:478–479

    Article  CAS  Google Scholar 

  • Järnegren J, Kutti T (2014) Lophelia pertusa in Norwegian waters. What have we learned since 2008? NINA Rep 1028:40

    Google Scholar 

  • Janiszewska K, Mazur M, Escrig S, et al (2017) Aragonitic scleractinian corals in the cretaceous calcitic sea. Geology 45:319–322

    Article  CAS  Google Scholar 

  • Kano A, Ferdelman TG, Williams T, et al (2007) Age constraints on the origin and growth history of a deep-water coral mound in the Northeast Atlantic drilled during Integrated Ocean drilling program expedition 307. Geology 35:1051–1054

    Article  CAS  Google Scholar 

  • Lee S, Shi GR, Park TYS, et al (2017) Virtual palaeontology: the effects of mineral composition and texture of fossil shell and hosting rock on the quality of X-ray microtomography (XMT) outcomes using Palaeozoic brachiopods. Palaeont Electr 20.2.3T, pp 1–25. palaeo-electronica.org/content/2017/1891-xmt-on-brachiopod-fossils

  • Lo Iacono C, Gràcia E, Ranero CR, et al (2014) The West Melilla cold-water coral mounds, eastern Alboran Sea: morphological characterization and environmental context. Deep-Sea Res Part 2 Top Stud Oceanogr 99:316–326

    Article  Google Scholar 

  • López Correa M, Freiwald A, Hall-Spencer J, et al (2005) Distribution and habitats of Acesta excavata (Bivalvia: Limidae) with new data on its shell ultrastructure. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 173–205

    Google Scholar 

  • López-Correa M, Freiwald A, Demuth M (2007) Cold-water corals as climate archives in the ocean depths. Computer tomography of sediment cores provides outstanding insights for geologists SOMATOM sessions, pp 52–54

    Google Scholar 

  • Malinverno E, Taviani M, Rosso A, et al (2010) Stratigraphic framework of the Apulian deep-water coral province, Ionian Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 57:345–359

    Article  Google Scholar 

  • Margreth S, Gennari G, Rüggeberg A, et al (2011) Growth and demise of cold-water coral ecosystems on mud volcanoes in the West Alboran Sea: the messages from the planktonic and benthic foraminifera. Mar Geol 282:26–39

    Article  Google Scholar 

  • Mastrototaro F, D’Onghia G, Corriero G (2010) Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res Part 2 Top Stud Oceanogr 57:412–430

    Article  Google Scholar 

  • McCulloch M, Taviani M, Montagna P, et al (2010) Proliferation and demise of deep-sea corals in the Mediterranean during the younger Dryas. Earth Plan Sci Lett 298:143–152

    Article  CAS  Google Scholar 

  • Moissette P, Cornée J-J, Quillévéré F, et al (2017) Pleistocene (Calabrian) deep-water corals and associated biodiversity in the eastern Mediterranean (Karpathos Island, Greece). J Quat Sci 32:923–933

    Article  Google Scholar 

  • Montagna P, McCulloch M, Taviani M, et al (2006) Phosphorus in cold-water corals as proxy for seawater nutrient chemistry. Science 312:1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Montagna P, Taviani M, Silenzi S, et al (2011) Marine climate archives and geochemical proxies: a review and future investigations on the Mediterranean Sea. In: Brugnoli E, Cavarretta G, Mazzola S, et al (eds) Marine research at CNR, vol DTA/06-2011, pp 809–822

    Google Scholar 

  • Montanaro E (1931) Coralli pliocenici dell’Emilia. Palaeontogr Ital 31:63–91

    Google Scholar 

  • Montenat C, Barrier P, Di Geronimo I (1987) The strait of Messina, past and present: a review. Doc et Trav IGAL 11:7–13

    Google Scholar 

  • Mullins HT, Newton CR, Heath K, et al (1981) Modern deep-water coral mounds north of Little Bahama Bank; criteria for recognition of deep-water coral bioherms in the rock record. J Sediment Res 51:999–1013

    Google Scholar 

  • Nasto I, Cardone F, Mastrototaro F, et al (2018) Benthic invertebrates associated with subfossil cold-water corals and hardgrounds in the Adriatic Albanian waters (Mediterranean Sea). Turk J Zool 42. https://doi.org/10.3906/zoo-1708-44

    Article  Google Scholar 

  • Newton CR, Mullins HT, Gardulski A, et al (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. PALAIOS 2:359–367

    Article  CAS  Google Scholar 

  • Noé S, Titschack J, Freiwald A, et al (2006) From sediment to rock: diagenetic processes of hardground formation in deep-water carbonate mounds of the NE Atlantic. Facies 52:183–208

    Article  Google Scholar 

  • Panetta P, Mastrototaro F, Capezzuto F, et al (2010) Size evaluation of Delectopecten vitreus (Mollusca, Bivalvia) from Santa Maria di Leuca deep-water coral site (Ionian Sea). Biol Mar Med 17:308–309

    Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la mer Méditerranée. Rec Trav Sta Mar Endoume 47:3–137

    Google Scholar 

  • Placella B (1979) Nuove osservazioni sulla corallofauna delle argille pleistoceniche di Archi (Reggio Calabria). Boll Soc Nat Napoli 87:1–31

    Google Scholar 

  • Placella B (1980) I coralli pliocenici di Masseria Concarone, Pisticci (Mt). Boll Soc Nat Napoli 89:19–32

    Google Scholar 

  • Qurban MA, Krishnakumar PK, Joydas TV, et al (2014) In-situ observation of deep water corals in the northern Red Sea waters of Saudi Arabia. Deep-Sea Res Part 1 Oceanogr Res Pap 89:35–43

    Article  Google Scholar 

  • Raddatz J, Rüggeberg A, Liebetrau V, et al (2014) Environmental boundary conditions of cold-water coral mound growth over the last 3 million years in the Porcupine Seabight, Northeast Atlantic. Deep-Sea Res Part 2 Top Stud Oceanogr 99:227–236

    Article  CAS  Google Scholar 

  • Rapp HT, Sneli JA (1999) Lophelia pertusa – myths and reality. Abstracts 2nd Nord Mar Sci Meet, Hirtshals, Denmark, 2–4 March 1999

    Google Scholar 

  • Remia A, Taviani M (2005) Shallow-buried Pleistocene Madrepora-dominated coral mounds on a muddy continental slope, Tuscan archipelago, NE Tyrrhenian Sea. Facies 50:419–425

    Article  Google Scholar 

  • Remia A, Montagna P, Taviani M (2004) Submarine diagenetic products on the sediment-starved Gorgona slope, Tuscan archipelago (Tyrrhenian Sea). Chem Ecol 20:131–153

    Article  CAS  Google Scholar 

  • Roberts JM (2005) Reef-aggregating behaviour by a symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs? J Mar Biol Assoc UK 85:813–819

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York, p 334

    Google Scholar 

  • Robinson LF, Adkins JF, Frank N, et al (2014) The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for paleoceanography. Deep-Sea Res Part 2 Top Stud Oceanogr 99:184–198

    Article  CAS  Google Scholar 

  • Ross SW, Nizinski MS (2007) State of the U.S. deep coral ecosystems in the Southeastern United States region: Cape Hatteras to the Florida Straits. In: Lumsden SE, Hourigan TF, Bruckner AW, et al (eds) The state of deep coral ecosystems of the United States, NOAA technical memorandum CRCP-3. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Silver Spring, 233 pp

    Google Scholar 

  • Rosso A, Vertino A, Di Geronimo I, et al (2010) Hard- and soft-bottom thanatofacies from the Santa Maria di Leuca deep-water coral province, recent Mediterranean. Deep-Sea Res Part 2 Top Stud Oceanogr 57:360–379

    Article  Google Scholar 

  • Rosso A, Sanfilippo R, Sciuto F, et al (2013) Capo Milazzo (Plio-Pleistocene): an overview. In: Rosso A, Sanfilippo R, Sciuto F (eds) Pre-conference field-trip guide, IBA, June 3rd–9th, 2013, p 57

    Google Scholar 

  • Rüggeberg A, Dullo C, Dorschel B, et al (2007) Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight). Int J Earth Sci 96:57–72

    Article  CAS  Google Scholar 

  • Ruggieri G, Sprovieri R, Uniti M, et al (1979) Indagini batimetriche sulle argille pleistoceniche (siciliano) di Primosole (Siracusa). Naturalista Siciliano (s V) 3:119–129

    Google Scholar 

  • Sabelli B, Taviani M (2014) The making of the Mediterranean molluscan biodiversity. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, pp 285–306

    Google Scholar 

  • Sanfilippo R, Vertino A, Rosso A, et al (2013) Serpula aggregates and their role in deep-sea coral communities in the southern Adriatic Sea. Facies 59:663–677

    Article  Google Scholar 

  • Sartoretto S, Zibrowius H (2017) Note on new records of living Scleractinia and Gorgonaria between 1700 and 2200 m depth in the western Mediterranean Sea. Mar Biodivers 48:4. https://doi.org/10.1007/s12526-017-0829-6

    Article  Google Scholar 

  • Savini A, Vertino A, Marchese F, et al (2014) Mapping cold-water coral habitats at different scales within the northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability. PLoS One 9:e87108. https://doi.org/10.1371/journal.pone.0087108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder-Ritzrau A, Freiwald A, Mangini A (2005) U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Berlin, Heidelberg, pp 157–172

    Google Scholar 

  • Seddon AWR, Mackay AW, Baker AG, et al (2014) Looking forward through the past: identification of 50 priority research questions in palaeoecology. J Ecol 102:256–267

    Article  Google Scholar 

  • Seguenza G (1864) Disquisizioni paleontologiche intorno ai Corallarii fossili delle rocce terziarie del distretto di Messina. Mem R Acc Sci Torino (Ser 2) 21:399–560

    Google Scholar 

  • Selli R (1970) Ricerche geologiche preliminari nel Mar Tirreno. Giorn Geol 37:1–249

    Google Scholar 

  • Smiley TM, Terry RC (2017) Palaeoecology: methods. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0003274.pub2

  • Spadini (2015) Sclerattiniari del Pliocene senese (Cnidaria, Anthozoa). Mem Acc Scie Siena Fisiocratici:1–159

    Google Scholar 

  • Squires DF (1964) Fossil coral thickets in Wairarapa. N Z J Paleontol 38:904–915

    Google Scholar 

  • Stalder C, Vertino A, Rosso A, et al (2015) Microfossils, a key to unravel cold-water carbonate mound evolution through time: evidence from the Eastern Alboran Sea. PLoS One 10:e0140223. https://doi.org/10.1371/journal.pone.0140223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley GD Jr, Cairns SD (1988) Constructional azooxanthellate coral communities; an overview with implications for the fossil record. Palaios 3:233–242

    Article  Google Scholar 

  • Stolarski J, Vertino A (2007) First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53:67–78

    Article  Google Scholar 

  • Sutton M, Rahman I, Garwood R (2014) Techniques for virtual paleontology, 1st edn. Wiley Blackwell, Chichester

    Google Scholar 

  • Tanaka A, Nakano T (2011) Data report: three-dimensional observation and quantification of internal structure of sediment core from Challenger Mound area in the Porcupine Seabight off western Ireland using a medical X-ray CT. In: Ferdelman TG, Kano A, Williams T, et al (eds) IODP, 307. Integrated Ocean Drilling Program Management International, Inc, Washington, DC. https://doi.org/10.2204/iodp.proc.307.209.2009

    Chapter  Google Scholar 

  • Taviani M (1998) Axial sedimentation of the Red Sea transitional region (22°–25°N): pelagic, gravity flow and sapropel deposition during the late quaternary. In: Purser BH, DWJ B (eds) Sedimentation and tectonics of rift basins: Red Sea -gulf of Aden. Chapman and Hall, London, pp 467–478

    Chapter  Google Scholar 

  • Taviani M (2002) The Mediterranean benthos from late Miocene up to present: ten million years of dramatic climatic and geological vicissitudes. Biol Mar Medit 9:445–463

    Google Scholar 

  • Taviani M (2003) Shaping the biogeography of the Mediterranean basin: one geologist’s perspective. In: ‘Marine biogeography of the Mediterranean Sea: patterns and dynamics of biodiversity’ Biogeographia, vol 24. Nuova Immagine Ed, Siena, pp 15–22

    Google Scholar 

  • Taviani M (2014) Marine chemosynthesis in the Mediterranean Sea. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, pp 69–83

    Google Scholar 

  • Taviani M, Colantoni P (1979) Thanatocoenoses wurmiennes associées aux craux blancs. Rapp Comm Int Mer Médit 25/26:141–142

    Google Scholar 

  • Taviani M, Bouchet P, Metivier B, et al (1991) Intermediate steps of southwards fauna1 shifts testified by last glacial submerged thanatocoenoses in the Atlantic Ocean. Palaeogeogr Palaeoclim Palaeoecol 86:331–338

    Article  Google Scholar 

  • Taviani M, López Correa M, Zibrowius H (2007) Last glacial deep-water corals from the Red Sea. Bull Mar Sci 81:361–370

    Google Scholar 

  • Taviani M, Angeletti L, Dimech M, et al (2009) Coralliophilinae (Mollusca: Gastropoda) associated with deep-water coral banks in the Mediterranean. The Nautilus 123:106–112

    Google Scholar 

  • Taviani M, Freiwald A, Beuck L (2010) The deepest known occurrence of the precious red coral Corallium rubrum (L. 1758) in the Mediterranean Sea. In: Bussoletti E, Cottingham D, Bruckner A, et al (eds) Proceedings of the international workshop on red coral science, management, trade: lessons from the Mediterranean, NOAA technical memorandum CRCP-13. NOAA, Silver Spring, MA, p 87

    Google Scholar 

  • Taviani M, Vertino A, López Correa M, et al (2011a) Pleistocene to recent scleractinian deep-water corals and coral facies in the Eastern Mediterranean. Facies 57:579–603

    Article  Google Scholar 

  • Taviani M, Angeletti L, Antolini B, et al (2011b) Geo-biology of Mediterranean deep-water coral ecosystems. In: Brugnoli E, Cavaretta G, Mazzola S, et al (eds) Marine research at CNR, vol DTA/06-2011, pp 705–719

    Google Scholar 

  • Taviani M, Angeletti L, Beuck L, et al (2016) On and off the beaten track: megafaunal sessile life and Adriatic cascading processes. Mar Geol 375:146–160

    Article  Google Scholar 

  • Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water Coral Province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78

    Article  Google Scholar 

  • Taviani M, Colantoni P (1984) Paleobiocoenoses profondes a scleractiniaires sur l’escarpement de Malte-Syracuse (Mer Mediterranée): leur structure, leur age et leur signification. Oil Gas Sci Technol 39:547–559

    Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005a) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156

    Google Scholar 

  • Taviani M, Remia A, Corselli C, et al (2005b) First geomarine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean basin). Facies 50:409–417

    Article  Google Scholar 

  • Thierens M, Browning E, Pirlet H, et al (2013) Cold-water coral carbonate mounds as unique palaeo-archives: the Plio-Pleistocene challenger mound record (NE Atlantic). Quat Sci Rev 73:14–30

    Article  Google Scholar 

  • Thierens MM, Pirlet H, Titschack J, et al (2009) The 2.6 Ma depositional sequence from the challenger cold-water coral carbonate mound (IODP Exp. 307): a unique palaeo-record of Plio-Pleistocene NE Atlantic climate variability. Eos, Trans (Washington, DC) AGU Fall Meet Suppl 90: abstract PP11A-1284

    Google Scholar 

  • Thresher RE, Adkins J, Thagarajan N (2011) Modal analysis of the deep-water solitary scleractinian, Desmophyllum dianthus, on SW Pacific seamounts: inferred recruitment periodicity, growth, and mortality rates. Coral Reefs 30:1063–1070

    Article  Google Scholar 

  • Titschack J, Freiwald A (2005) Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald A, Roberts M (eds) Deep-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 41–59

    Google Scholar 

  • Titschack J, Bromley RG, Freiwald A (2005) Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sediment Geol 180:29–56

    Article  Google Scholar 

  • Titschack J, Vertino A, Pino P, et al (2008) Plio-Pleistocene cold-water coral deposits at La Montagna (Messina, Sicily) – submarine dune or cold-water coral mound. The geology of coral-rich carbonate systems: from tropical shallow water to cold, deep-water settings. Capo Sant’Alessio, 5–8 Maggio 2008, p 26

    Google Scholar 

  • Titschack J, Joseph N, Fietzke J, et al (2013) Record of a tectonically-controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sediment Geol 283:15–33

    Article  Google Scholar 

  • Titschack J, Fink HG, Baum D, et al (2016) Mediterranean cold-water corals–an important regional carbonate factory? Depos Rec 2:74–96

    Article  Google Scholar 

  • Toscano F, Raspini A (2005) Epilithozoan fauna associated with ferromanganese crustgrounds on the continental slope segment between Capri and li Galli Islands (bay of Salerno, northern Tyrrhenian Sea, Italy). Facies 50:427–441

    Article  Google Scholar 

  • Vandorpe T, Wienberg C, Hebbeln D, et al (2017) Multiple generations of buried cold-water coral mounds since the Early-Middle Pleistocene Transition in the Atlantic Moroccan Coral Province, southern Gulf of Cádiz. Palaeoclim Palaeogeogr Palaeoecol 485:293–304

    Article  Google Scholar 

  • Van Rooij D, Blamart D, De Mol L, et al (2011) Cold-water coral mounds on the Pen Duick Escarpment, Gulf of Cadiz: the MiCROSYSTEMS project approach. Mar Geol 282:102–117

    Article  Google Scholar 

  • van Weering TCE, de Haas H, de Stigter H, et al (2003) Structure and development of giant carbonate mounds at the SW and SE Rockall trough margins, NE Atlantic ocean. Mar Geol 198:67–81

    Article  Google Scholar 

  • Vella P (1964) Foraminifera and other fossils from late tertiary deep-water coral thickets, Wairarapa, New Zealand. J Paleontol 38:916–928

    Google Scholar 

  • Vertino A (2003) Sclerattiniari plio-pleistocenici e attuali del Mediterraneo (Sistematica, Biostratinomia e Paleoecologia). Ph D thesis, University of Messina (unpublished), pp 1–306

    Google Scholar 

  • Vertino A, Savini A, Rosso A, et al (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep-Sea Res Part 2 Top Stud Oceanogr 57:380–396

    Article  Google Scholar 

  • Vertino A, Stolarski J, Bosellini FR, et al (2014) Mediterranean corals through time: from Miocene to present. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, pp 257–274

    Google Scholar 

  • Vertino A, Titschack J, Rosso A, et al (2013) Messina Strait: CWC Pleistocene deposits from “La Montagna” (Messina). In: Vertino A, Basso D, Rosso A (eds) Field seminar guide book, COCARDE-ERN workshop and field seminar, Sicily, 23–27 September 2013, p 4

    Google Scholar 

  • Victorero L, Blamart D, Pons-Brachu E, et al (2016) Reconstruction of the formation history of the Darwin mounds, N Rockall trough: how the dynamics of a sandy contourite affected cold-water coral growth. Mar Geol 378:186–195

    Article  Google Scholar 

  • Wells PE (1986) Record of an upper Miocene fossil Goniocorella coral thicket, Mt. Bruce, Wairarapa, New Zealand. J R Soc N Z 16:139–144

    Article  Google Scholar 

  • Wheeler AJ, Beyer A, Freiwald A, et al (2007) Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int J Earth Sci 96:37–56

    Article  CAS  Google Scholar 

  • Wienberg C, Hebbeln D, Fink HG, et al (2009) Scleractinian cold-water corals in the Gulf of Cadiz-first clues about their spatial and temporal distribution. Deep-Sea Res Part 1 Oceanogr Res Pap 56:1873–1893

    Article  Google Scholar 

  • Wienberg C, Frank N, Mertens KN, et al (2010a) Glacial cold-water coral growth in the Gulf of Cádiz: implications of increased palaeo-productivity. Earth Planet Sci Lett 298:405–416

    Article  CAS  Google Scholar 

  • Wienberg C, Beuck L, Coughlan M, et al (2010b) Report and preliminary results of RV POSEIDON cruise POS400 “CORICON – cold-water corals along the Irish continental margin”, Vigo – Cork, June 29–July 15 2010. Berichte, Fachbereich Geowissenschaften, Universität Bremen 275, Bremen: 1–46

    Google Scholar 

  • Wienberg C, Titschack J, Freiwald A, et al (2018) The giant Mauritanian cold-water coral mound province: oxygen control on coral mound formation. Quat Sci Rev 185:135–152

    Article  Google Scholar 

  • Wienberg C, Titschack J (2017) Framework-forming scleractinian cold-water corals through space and time: a late quaternary North Atlantic perspective. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 699–732

    Google Scholar 

  • Wilber RJ, Neumann AC (1993) Effects of submarine cementation on microfabrics and physical properties of carbonate slope deposits, northern Bahamas. In: Rezak R, Lavoie DL (eds) Carbonate Microfabrics. Springer, New York, pp 79–94

    Chapter  Google Scholar 

  • Wisshak M, Gektidis M, Freiwald A, et al (2005) Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies Facies 51:93–117

    Article  Google Scholar 

  • Wisshak M, López Correa M, Gofas S, et al (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic. Deep-Sea Res Part 1 Oceanogr Res Pap 56:374–407

    Article  CAS  Google Scholar 

  • Zapalski MK, Dohnalik M (2013) Blastogeny in tabulate corals: case studies using X-ray microtomography. Lethaia 46:223–231

    Article  Google Scholar 

  • Zibrowius (1980) Les Scléractiniaires de la Méditerranée et de lʼAtlantique nord-oriental. Mém Inst Océanogr Monaco 11:1–284 + 107 plates

    Google Scholar 

  • Zibrowius H (1981) Thanatocoenose plèistocène profonde à spongiaires et scléractiniaires dans la Fosse Hellénique. J Etud Systémat Evolut Biogéogr Méditerranée, Cagliari. CIESM:133–136

    Google Scholar 

  • Zibrowius H (1991) Les scléractiniaires du Miocéne au Pléistocène de Sicile et de Calabre de Giuseppe Seguenza (1864, 1880) (Cnidaria, Anthozoa). In: Bonfiglio L (ed) Celebrazione del 1° centenario di Giuseppe Seguenza, naturalista e paleontologo. Convegno di paleontologia e stratigrafia, Messina – Taormina, 22–26 maggio 1989. Atti Acc pelor pericol, Messina, (Classe di scienze fisiche, matematiche e naturali) 67: 75

    Google Scholar 

  • Zibrowius H, Taviani M (2005) Remarkable sessile fauna associated with deep coral and other calcareous substrates in the Strait of Sicily, Mediterranean Sea. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 807–819

    Google Scholar 

Cross References

  • Angeletti L, Bargain A, Campiani E, et al (this volume-a) Cold-water coral multiscale habitat mapping: methodologies and perspectives

    Google Scholar 

  • Angeletti L, Bettuzzi M, Morigi MP (this volume-b) Tomography of cold-water corals (CWC)-bearing cores

    Google Scholar 

  • Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of cold-water coral communities in Mediterranean hard and soft bottoms

    Google Scholar 

  • Freiwald A (this volume) Messinian Salinity Crisis: What Happened to Cold-Water Corals?

    Google Scholar 

  • Lo Iacono C, Savini A, Huvenne VAI, et al (this volume) Habitat mapping of cold-water corals in the Mediterranean Sea

    Google Scholar 

  • Montagna P, Taviani M (this volume) Mediterranean cold-water corals as paleoclimate archives

    Google Scholar 

  • Rebesco M, Taviani M (this volume) A turbulent story: Mediterranean deep-sea sedimentation and Cold-water coral establishment

    Google Scholar 

  • Rueda J, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas

    Google Scholar 

  • Taviani M (this volume) Changing views about Mediterranean cold-water corals

    Google Scholar 

  • Titschack J (this volume) Bathyal corals within the Aegean Sea and the adjacent Hellenic trench

    Google Scholar 

  • Vertino A, Taviani M, Corselli C (this volume) Spatio-temporal distribution of Mediterranean cold-water corals

    Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to Jean Pierre Henriet (1945–2017), a friend and a colleague, to honor his prominent contribution to unveil the geological importance of cold-water corals. We are indebted to Helmut Zibrowius and three anonymous referees for their positive and useful comments to improve the clarity of the text, and to Covadonga Orejas and Carlos Jiménez for editorial work. The current understanding of extant deep-water coral taxonomy, biogeography and spatio-temporal distribution owns immensely to the research activity of Helmut Zibrowius at sea and on-land. His keen and meticulous understanding of North Atlantic and Mediterranean coral taxonomy has been the source of inspiration for all subsequent studies in the field. This paper is Ismar-Bologna scientific contribution n. 1933, and is part of EU F.P. VII Projects COCONET, (contract no. 287844), and EVER-EST (contract no. 674907), DG Environment programme IDEM (grant agreement No 11.0661 /2017/750680/SUB/EN V.C2), and the Flag Project Ritmare (Ricerca Italiana per il Mare) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Remia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taviani, M., Vertino, A., Angeletti, L., Montagna, P., Remia, A. (2019). 2 Paleoecology of Mediterranean Cold-Water Corals. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_2

Download citation

Publish with us

Policies and ethics