Skip to main content

12 Tomography of Cold-Water Corals-Bearing Cores

  • Chapter
  • First Online:

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

X-ray Computed Tomography is a non-destructive technique to resolve internal structures and their three-dimensional visualisation. Computed Tomography presents a wide spectrum of application in earth sciences and proves useful to unravel the architecture of sedimentary cores, including those containing cold-water corals. In particular the application of Computed Tomography not only discloses the presence of corals in the core and facilitates taxonomic identification up to species-level, but elucidates also their three-dimensional distribution and taphonomic aspects. The advantages offered by Computed Tomography-scan are continuously growing and is becoming a standard method of analysis for cold-water coral-bearing cores studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Applbaum N, Applbaum YH (2005) The use of medical computed tomography (CT) imaging in the study of ceramic and clay archaeological artifacts from the ancient near east. In: Uda M, Demortier G, Nakai I (eds) X-rays for archaeology. Springer, Dordrecht, pp 231–245

    Chapter  Google Scholar 

  • Ashi J (1997) Computed tomography scan image analysis of sediments. In: Shipley TH, Ogawa Y, Blum P, Bahr J (eds) Proceedings of the ocean drilling program, scientific results 156, pp 151–159

    Google Scholar 

  • Baum D, Titschack J (2016). Cavity and pore segmentation in 3D images with ambient occlusion. In: Bertini E, Elmqvist N, Wischgoll T (eds) Proceedings of the 18th EG/VGTC conference on visualization, Groningen, The Netherlands, pp 6–10

    Google Scholar 

  • Beuck L, Vertino A, Stepina E, et al (2007) Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53:157–176

    Article  Google Scholar 

  • Boespflug X, Long BFN, Occhietti S (1995) CAT-scan in marine stratigraphy: a quantitative approach. Mar Geol 122:281–301

    Article  Google Scholar 

  • Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Sci Rev 123:1–17

    Article  Google Scholar 

  • Douarin M, Sinclair DJ, Elliot M, et al (2014) Changes in fossil assemblages in sediment cores from Mingulay Reef Complex (NE Atlantic): implications for coral reef build-up. Deep-Sea Res Part 2 Top Stud Oceanogr 99:286–296

    Article  Google Scholar 

  • Eisele M, Frank N, Wienberg C, et al (2014) Sedimentation patterns on a cold-water coral mound off Mauritania. Deep-Sea Res Part 2 Top Stud Oceanogr 99:316–326

    Article  Google Scholar 

  • Färber C, Titschack J, Schönberg CHL, et al (2016) Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography. Biogeosciences 13:3461–3474

    Article  Google Scholar 

  • Foubert A, Henriet J-P (2009) Nature and Significance of the Recent Carbonate Mound Record. Lecture Notes in Earth Sciences. Springer, Berlin, Heidelberg 126: 1–298

    Chapter  Google Scholar 

  • Foubert A, Van Rooij D, Blamart D, et al (2007) X-ray imagery and physical core logging as a proxy of the content of sediment cores in cold-water coral mound provinces: a case study from Porcupine Seabight, SW of Ireland. Int J Earth Sci 96:141–158

    Article  CAS  Google Scholar 

  • Holler P, Kögler F-C (1990) Computed tomography: a nondestructive, high-resolution technique for investigation of sedimentary structures. Mar Geol 91:263–266

    Article  Google Scholar 

  • Iturrino GJ, Ketcham RA, Christiansen L, et al (2004) Data report: permeability, resistivity, and X-ray computed tomography measurements in samples from the PACMANUS hydrothermal system. In: FJAS B, Binns RA, Miller DJ, et al (eds) Proceedings of the ODP, scientific results, vol 193. Ocean Drilling Program, College Station, pp 1–14

    Google Scholar 

  • Lenoir N, Bornert M, Desrues J, et al (2007) 3D digital image correlation applied to X-ray micro tomography images from triaxial compression tests on argillaceous rock. Strain 43:193–205

    Article  Google Scholar 

  • López-Correa M, Freiwald A, Demuth M (2007) Cold-water corals as climate archives in the ocean depths. Computer tomography of sediment cores provides outstanding insights for geologists. SOMATOM Sess 21:52–54

    Google Scholar 

  • Nabawy BS, David C (2016) X-ray CT scanning imaging for the Nubia sandstone as a tool for characterizing its capillary properties. Geosci J 20(5):691–704

    Article  CAS  Google Scholar 

  • Orsi TH, Anderson AL (1999) Bulk density calibration for X-ray tomographic analyses of marine sediments. Geo-Mar Lett 19:270–274

    Article  Google Scholar 

  • Petrovic AM, Siebert JE, Rieke PE (1982) Soil bulk density analysis in three dimensions by computed tomographic scanning. Soil Sci Soc Am J 46:445–450

    Article  Google Scholar 

  • Pirlet H, Wehrmann LM, Brunner B, et al (2010) Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland. Sedimentology 57:786–805

    Article  CAS  Google Scholar 

  • Pirlet H, Wehrmann LM, Foubert A, et al (2012) Unique authigenic mineral assemblages reveal different diagenetic histories in two neighbouring cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz. Sedimentology 59:578–604

    Article  CAS  Google Scholar 

  • Ritman EL (2004) Micro-computed tomography – current status and developments. Annu Rev Biomed Eng 6:185–208

    Article  CAS  Google Scholar 

  • Rüggeberg A, Dorschel B, Dullo WC, et al (2005) Sedimentary patterns in the vicinity of a carbonate mound in the Hovland Mound Province, northern Porcupine Seabight. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, Berlin, pp 87–112

    Google Scholar 

  • Schönberg CHL, Shields G (2008) Micro-computed tomography for studies on Entobia: transparent substrate versus modern technology. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 147–164

    Google Scholar 

  • Stelzner J, Ebinger-Rist N, Peek C, et al (2010) The application of 3D computed tomography with X-rays and neutrons to visualize archaeological objects in blocks of soil. Stud Conserv 55:95–106

    Article  Google Scholar 

  • Tanaka A, Nakano T (2009) Data report: three-dimensional observation and quantification of internal structure of sediment core from Challenger Mound area in the Porcupine Seabight off Western Ireland using a medical X-ray CT. In: Ferdelman TG, Kano A, Williams T, et al (eds) Proceedings of the IODP 307. Integrated Ocean Drilling Program Management International, Inc., Washington, DC

    Google Scholar 

  • Tanaka A, Nakano T, Ikehara K (2011) X-ray computerized tomography analysis and density estimation using a sediment core from the Challenger Mound area in the Porcupine Seabight, off Western Ireland. Earth Planets Space 63:103–110

    Article  Google Scholar 

  • Titschack J, Thierens M, Dorschel B, et al (2009) Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Mar Geol 259:36–46

    Article  CAS  Google Scholar 

  • Titschack J, Baum D, De Pol-Holz R, et al (2015) Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs. Sedimentology 62:1873–1898

    Article  Google Scholar 

  • Titschack J, Fink HG, Baum D, et al (2016) Mediterranean cold-water corals – an important regional carbonate factory? Depos Rec 2(1):74–96

    Article  Google Scholar 

  • van der Land C, Mienis F, De Haas H, et al (2010) Diagenetic processes in carbonate mound sediments at the south-west Rockall Trough margin. Sedimentology 57:912–931

    Article  Google Scholar 

  • van der Land C, Mienis F, De Haas H, et al (2011) Paleo-redox fronts and their formation in carbonate mound sediments from the Rockall Trough. Mar Geol 284:86–95

    Article  Google Scholar 

  • Victorero L, Blamart D, Pons-Brachu E, et al (2016) Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough: how the dynamics of a sandy contourite affected cold-water coral growth. Mar Geol 378:186–195

    Article  Google Scholar 

  • Wienberg C, Titschack J (2017) Framework-forming scleractinian cold-water corals through space and time: a late Quaternary North Atlantic perspective. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 699–732

    Google Scholar 

Download references

Acknowledgements

Captain, crew and shipboard staff of R/V Urania cruise Decors are thanked for their efficient and skilful cooperation at sea. Marco Taviani and Paolo Montagna provided helpful comments to earlier versions of this manuscript. We acknowledge Jurgen Titschack, Andrés Rüggeberg and Cova Orejas for their useful reviews that helped improving the clarity of the text. This paper is Ismar-Bologna scientific contribution n. 1929 and is part of EU F.P. VII Projects COCONET, (contract no. 287844), and EVER-EST (contract no. 674907), DG Environment programme IDEM (grant agreement No 11.0661/2017/750680/SUB/EN V.C2), and the Flag Project Ritmare (Ricerca Italiana per il Mare).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Angeletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angeletti, L., Bettuzzi, M., Morigi, M.P. (2019). 12 Tomography of Cold-Water Corals-Bearing Cores. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_12

Download citation

Publish with us

Policies and ethics