Skip to main content

Heat and Moisture Simulations of Repair Mortars: Benchmark Experiments and Practical Cases in Conservation

  • Chapter
  • First Online:
Historic Mortars
  • 576 Accesses

Abstract

Simulation tools are increasingly used for assessment and design of buildings, for new construction as well as for historical buildings. HAM (heat, air and moisture) simulations of porous materials can be very useful to assess the behaviour of repair mortars because hygrothermal conditions govern many decay mechanisms and are one of the keys to compatibility. This paper demonstrates some of the possibilities for mortars in a number of practical cases, using Delphin as a HAM simulation code. The first is a 2D assessment of the hygric interaction between mortar and brick. Next there are a series of 1D simulations of multi-layered porous systems. Pragmatic methods to obtain the necessary material parameters are proposed. Issues like local alterations of transport properties and interface resistances are briefly discussed. The possibilities of simulations of the behaviour of salt solutions are introduced. In a last case, a procedure to assess the risk on frost damage is demonstrated. Finally some possible or desirable future developments are pointed out: incorporating climate change, combining HAM with other simulation methods and stochastic treatment of material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Carmeliet, J., Adan, O., Brocken, H., ÄŒerný, R., Hall, C., Hens, H., K. Kumaran, M., Pavlik, Z., Pel, L., Plagge, R., & Roels, S. (2004). Determination of the liquid water diffusivity from transient moisture transfer experiments. Journal of Thermal Envelope and Building Science, 27. https://doi.org/10.1177/1097196304042324.

    Article  Google Scholar 

  • CEN. (2001). EN-ISO 12572: 2001 (en): Hygrothermal performance of building materials and products—Determination of water vapour transmission properties.

    Google Scholar 

  • CEN. (2009). EN 15801: 2009 Conservation of cultural property—Test methods—Determination of water absorption by capillarity. Brussels: CEN.

    Google Scholar 

  • Cóstola, D., Blocken, B., & Hensen, J. (2009). External coupling between BES and HAM programs for whole-building simulation. Eleventh International IBPSA Conference, Glasgow, (pp. 316–323). July 27–30, 2009.

    Google Scholar 

  • Derluyn, H. (2012). Salt transport and crystallization in porous limestone: Neutron—X-ray imaging and poromechanical modelling (Ph.D. thesis). ETH Zürich.

    Google Scholar 

  • Derluyn, H., Janssen, H., & Carmeliet, J. (2011). Influence of the nature of interfaces on the capillary transport in layered materials. Construction and Building Materials, 25(9), 3685–3693.

    Article  Google Scholar 

  • Espinosa, R., Franke, L., Deckelmann, G., & Gunstmann, C. (2007). Gekoppelter Wärme- und Stofftransport einschließlich der Korrosionsprozesse in porösen Baustoffen mit dem Simulationsprogramm AStra. Bauphysik, 29(3), 187–193.

    Article  Google Scholar 

  • Groot, C., & Gunneweg, J. (2005). Totaalonderzoeksproject Aanpak vochtproblematiek massief metselwerk. Deelonderzoek kwaliteitseisen restauratiebaksteen, Delft http://repository.tudelft.nl/search/ir/?q=kwaliteitseisen+restauratiebaksteen&faculty=&department=&type=&year= Publication OR1 of this link (version March 16).

  • Hagentoft, C.-E. (2001). Introduction to building physics, Lund, ISBN 9144018967 (422p).

    Google Scholar 

  • Hall, C., & Hoff, W. D. (2002). Water transport in brick, stone and concrete, London: Taylor & Francis, ISBN 0–419-22890-X (318p).

    Google Scholar 

  • Hendrickx, R. (2012). Using the Karsten tube to estimate water transport parameters of porous building materials—the possibilities of analytical and numerical solutions. Materials and Structures, 46, 1309–1320.

    Article  Google Scholar 

  • Hendrickx, R., Roels, S., & Van Balen, K. (2010). Water transport between mortar and brick : the influence of material parameters. In J. Valek, C. J. W. P. Groot & J. J. Hughes (Eds.), Historic mortars. Characterisation, assessment and repair RILEM, ISBN 978-94-007-4634-3, pp. 329–342.

    Chapter  Google Scholar 

  • Hens, H. (2012). Building physics. Heat, air and moisture. Fundamentals and engineering methods with examples and exercises. Berlin: Ernst and Sohn, ISBN 978-3433030271 (330p).

    Google Scholar 

  • IPCC. (2007). Climate change 2007 : An assessment of the intergovernmental panel on climate change.

    Google Scholar 

  • Janssen, H. (2013). Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliability Engineering and System Safety, 109, 123–132.

    Article  Google Scholar 

  • Janssen, H., Blocken, B., & Carmeliet, J. (2007). Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. International Journal of Heat and Mass Transfer, 50(5–6), 1128–1140.

    Article  Google Scholar 

  • Krus, M. (1996). Moisture transport and storage coefficients of porous mineral building materials: Theoretical principles and new test methods, Fraunhofer IRB, Stuttgart, ISBN 3-81674535-0 (106p).

    Google Scholar 

  • Nicolai, A. (2007). Modeling and numerical simulation of salt transport and phase transition in unsaturated porous building materials (Ph.D. thesis). Syracuse University.

    Google Scholar 

  • Poupeleer, A.-S. (2007). Transport and crystallization of dissolved salts in cracked porous building materials (Ph.D. thesis). KULeuven.

    Google Scholar 

  • RILEM TC25-PEM. (1980). Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods (in french). Materials and Structures, 13(75), 175–253.

    Google Scholar 

  • Roels, S. (2000). Modelling unsaturated moisture transport in heterogeneous limestone (Ph.D. thesis). KULeuven.

    Google Scholar 

  • Scheffler, G., & Plagge, R. (2010). A whole range hygric material model: Modelling liquid and vapour transport properties in porous media. International Journal of Heat and Mass Transfer, 53(1–3), 286–296.

    Article  Google Scholar 

  • Å imůnek, J., Van Genuchten, M. T., & Å ejna, M. (2008). Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal, 7(2), 587–600.

    Article  Google Scholar 

  • Van Gelder, L., Janssen, H., & Roels, S. (2012). Retrofitting cavity walls—an example of a Monte Carlo simulation to evaluate risks and energy savings. In 5th International Building Physics Conference. May 28–31, 2012, Kyoto cd-rom (abstract p. 112).

    Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for the prediction of the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–895.

    Article  Google Scholar 

  • Van Hees, R. J. P. et al. (Eds.) (1998). Evaluation of the performance of surface treatments for the conservation of historic brick masonry (Research Report No 7). European Commission, ISBN 92-828-2366-0.

    Google Scholar 

  • Van Hees, R. P. J., Pel, L., & Lubelli, B. (2002). Towards compatible repair mortars for masonry in monuments. In E. Galan & F. Zezza (Eds.), 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin—Protection and Conservation of the Cultural Heritage of the Mediterranean Cities, Seville, Spain (pp. 371–375) Lisse: Swets and Zeitlinger (2000).

    Google Scholar 

  • Van Hunen, M., (2012). Het geveloppervlak van dichtbij bekeken. Eigenschappen en waarde van de huid. In M. Van Hunen, (Ed.), Historisch metselwerk. Instandhouding, herstel en conservering (pp. 275–287). Zwolle: W Books.

    Google Scholar 

  • Voronina, V., & Pel, L. (2013). The influence of osmotic pressure on poulticing treatments for cultural heritage objects. Materials and Structures, 46, 221–231.

    Article  Google Scholar 

Download references

Acknowledgements

Andreas Nicolai is kindly acknowledged for his support concerning Delphin simulations. Hans Janssen, Rosa Espinosa and Liesje Van Gelder provided useful information about their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel Hendrickx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hendrickx, R., De Clercq, H. (2019). Heat and Moisture Simulations of Repair Mortars: Benchmark Experiments and Practical Cases in Conservation. In: Hughes, J., Válek, J., Groot, C. (eds) Historic Mortars. Springer, Cham. https://doi.org/10.1007/978-3-319-91606-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91606-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91604-0

  • Online ISBN: 978-3-319-91606-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics