Skip to main content

Online Trajectory Optimization and Navigation in Dynamic Environments in ROS

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 778))

Abstract

This tutorial chapter provides a comprehensive step-by-step guide on the setup of the navigation stack and the teb_local_planner package for mobile robot navigation in dynamic environments. The teb_local_planner explicitly considers dynamic obstacles and their predicted motions to plan an optimal collision-free trajectory. The chapter introduces a novel plugin to the costmap_converter ROS package which supports the detection and motion estimation of moving objects from the local costmap. This tutorial covers the theoretical foundations of the obstacle detection and trajectory optimization in dynamic scenarios. The presentation is designated for ROS Kinetic and Lunar and both packages will be maintained in future ROS distributions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ROS navigation, http://wiki.ros.org/navigation.

  2. 2.

    Adopted from the move_base wiki page, http://wiki.ros.org/move_base.

  3. 3.

    tf, http://wiki.ros.org/tf.

  4. 4.

    teb_local_planner, http://wiki.ros.org/teb_local_planner.

  5. 5.

    costmap_converter, http://wiki.ros.org/costmap_converter.

  6. 6.

    pluginlib, http://wiki.ros.org/pluginlib.

  7. 7.

    rviz, http://wiki.ros.org/rviz.

  8. 8.

    costmap_2d, http://wiki.ros.org/costmap_2d.

  9. 9.

    OpenCV SimpleBlobDetector,http://docs.opencv.org/3.3.0/d0/d7a/classcv_1_1SimpleBlobDetector.html.

  10. 10.

    stage_ros, http://wiki.ros.org/stage_ros.

  11. 11.

    gazebo_ros_pkgs, http://wiki.ros.org/gazebo_ros_pkgs.

  12. 12.

    teb_local_planner_tutorials, https://github.com/rst-tu-dortmund/teb_local_planner_tutorials/tree/rosbook_volume3.

  13. 13.

    Conventions for names of common coordinate frames in ROS are listed at http://www.ros.org/reps/rep-0105.html.

  14. 14.

    The sampling interval can be adjusted by means of the parameter controller_frequency provided by the move_base node of the navigation stack.

  15. 15.

    libg2o, http://wiki.ros.org/libg2o.

  16. 16.

    teb_local_planner, http://wiki.ros.org/teb_local_planner.

  17. 17.

    Interactive markers, http://wiki.ros.org/interactive_markers.

References

  1. S. Bhattacharya, M. Likhachev, V. Kumar, Identification and representation of homotopy classes of trajectories for search-based path planning in 3D. in Proceedings of Robotics: Science and Systems (2011)

    Google Scholar 

  2. V. Delsart, T. Fraichard, Reactive trajectory deformation to navigate dynamic environments. in European Robotics Symposium (2008), pp. 233–241

    Google Scholar 

  3. P. Fiorini, Z. Shiller, Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  4. D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance. IEEE Robot. Autom. Magaz. 4(1), 23–33 (1997)

    Article  Google Scholar 

  5. C. Fulgenzi, A. Spalanzani, C. Laugier, Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. in IEEE International Conference on Robotics and Automation (ICRA) (2007)

    Google Scholar 

  6. B. Gerkey, K. Konolige, Planning and control in unstructured terrain. in Proceedings of the ICRA Workshop on Path Planning on Costmaps (2008)

    Google Scholar 

  7. T. Gu, J. Atwood, C. Dong, J. M. Dolan, J.-W. Lee, Tunable and stable real-time trajectory planning for urban autonomous driving. in IEEE International Conference on Intelligent Robots and Systems (IROS) (2015), pp. 250–256

    Google Scholar 

  8. H.W. Kuhn, The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  9. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard, G2o: a general framework for graph optimization. in IEEE International Conference on Robotics and Automation (ICRA) (2011), pp. 3607–3613

    Google Scholar 

  10. H. Kurniawati, T. Fraichard, From path to trajectory deformation. in IEEE/RSJ International Conference on Intelligent Robots and Systems (RISO) (2007), pp. 159–164

    Google Scholar 

  11. M. Luber, A. Stork, G.D. Tipaldi, K.O. Arras, People tracking with human motion predictions from social forces. in IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 464–469

    Google Scholar 

  12. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, K. Konolige, The office marathon: robust navigation in an indoor office environment. in IEEE International Conference on Robotics and Automation (ICRA) (2010)

    Google Scholar 

  13. M. Morari, J.H. Lee, Model predictive control: past, present and future. Comput. Chem. Eng. 23(4–5), 667–682 (1999)

    Article  Google Scholar 

  14. J. Nocedal, S.J. Wright, Numerical Optimization, Operations Research (Springer, New York, 1999)

    Book  Google Scholar 

  15. K. Rebai, O. Azouaoui, M. Benmami, A. Larabi, Car-like robot navigation at high speed. in IEEE International Conference on Robotics and Biomimetics (ROBIO) (2007), pp. 2053–2057

    Google Scholar 

  16. C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, T. Bertram, Trajectory modification considering dynamic constraints of autonomous robots. in 7th German Conference on Robotics (ROBOTIK) (2012), pp. 74–79

    Google Scholar 

  17. C. Rösmann, F. Hoffmann, T. Bertram, Integrated online trajectory planning and optimization in distinctive topologies. Robot. Auton. Syst. 88, 142–153 (2017)

    Article  Google Scholar 

  18. C. Rösmann, F. Hoffmann, T. Bertram, Online trajectory planning in ROS under kinodynamic constraints with timed-elastic-bands, Robot Operating System (ROS) - The Complete Reference 2, vol. 707, Studies in Computational Intelligence (Springer International Publishing, 2017)

    Google Scholar 

  19. C. Rösmann, F. Hoffmann, T. Bertram, Kinodynamic trajectory optimization and control for car-like robots. in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017), pp. 5681–5686

    Google Scholar 

  20. C. Rösmann, M. Oeljeklaus, F. Hoffmann, T. Bertram, Online trajectory prediction and planning for social robot navigation. in IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017), pp. 1255–1260

    Google Scholar 

  21. M. Seder, I. Petrović, Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. in IEEE International Conference on Robotics and Automation (ICRA) (2007), pp. 1986–1991

    Google Scholar 

  22. S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust Monte Carlo localization for mobile robots. Artif. Intell. 128, 99–141 (2001)

    Article  Google Scholar 

  23. S. Quinlan, O. Khatib, Elastic bands: connecting path planning and control. in IEEE International Conference on Robotics and Automation (ICRA) (1993), pp. 802–807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Albers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albers, F., Rösmann, C., Hoffmann, F., Bertram, T. (2019). Online Trajectory Optimization and Navigation in Dynamic Environments in ROS. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 778. Springer, Cham. https://doi.org/10.1007/978-3-319-91590-6_8

Download citation

Publish with us

Policies and ethics