Advertisement

Applications of Printed 2D Materials

  • Leonard W. T. Ng
  • Guohua Hu
  • Richard C. T. Howe
  • Xiaoxi Zhu
  • Zongyin Yang
  • Christopher G. Jones
  • Tawfique Hasan
Chapter

Abstract

The primary goal of this book is to comprehensively review 2D materials that have gained research interest and present the use of printing as a low-cost, high-throughput method of exploiting 2D materials in mass produced devices and components. This chapter covers the existing demonstrations of printed 2D materials in a wide variety of devices and summarises their current status. In addition, this chapter also discusses the state-of-the-art literature on the trends and development stages, future technology directions and their likely convergence for next generation of applications, devices and systems.

References

  1. 1.
    G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRefGoogle Scholar
  2. 2.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRefGoogle Scholar
  3. 3.
    E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRefGoogle Scholar
  4. 4.
    E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Arapov, G. Bex, R. Hendriks, E. Rubingh, R. Abbel, G. de With, H. Friedrich, Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 18(7), 1234–1239 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Huang, T. Leng, X. Zhang, J.C. Chen, K.H. Chang, A.K. Geim, K.S. Novoselov, Z. Hu, Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 106(20), 203105 (2015)CrossRefGoogle Scholar
  7. 7.
    P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11, 2742–2755 (2017)CrossRefGoogle Scholar
  8. 8.
    W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015)CrossRefGoogle Scholar
  9. 9.
    R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)CrossRefGoogle Scholar
  10. 10.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992)zbMATHGoogle Scholar
  11. 11.
    J. Li, J.K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007)CrossRefGoogle Scholar
  12. 12.
    P.J. Brigandi, J.M. Cogen, R.A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 54(1), 1–16 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRefGoogle Scholar
  15. 15.
    G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72(3), 953–959 (1992)CrossRefGoogle Scholar
  16. 16.
    A. Dani, A.A. Ogale, Electrical percolation behavior of short-fiber composites: experimental characterization and modeling. Compos. Sci. Technol. 56(8), 911–920 (1996)CrossRefGoogle Scholar
  17. 17.
    A.R. Madaria, A. Kumar, F.N. Ishikawa, C. Zhou, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3(8), 564–573 (2010)CrossRefGoogle Scholar
  18. 18.
    G.E. Pike, C.H. Seager, Percolation and conductivity: a computer study. I. Phys. Rev. B 10(4), 1421–1434 (1974)CrossRefGoogle Scholar
  19. 19.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)CrossRefGoogle Scholar
  20. 20.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRefGoogle Scholar
  21. 21.
    S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5), 2713–2720 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRefGoogle Scholar
  23. 23.
    S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6(3), 458–464 (2010)CrossRefGoogle Scholar
  24. 24.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRefGoogle Scholar
  25. 25.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)CrossRefGoogle Scholar
  26. 26.
    M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRefGoogle Scholar
  28. 28.
    X. Ho, J. Wei, Films of carbon nanomaterials for transparent conductors. Materials 6(6), 2155–2181 (2013)CrossRefGoogle Scholar
  29. 29.
    D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011)CrossRefGoogle Scholar
  30. 30.
    X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012)CrossRefGoogle Scholar
  31. 31.
    C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91(17), 1529–1598 (2007)CrossRefGoogle Scholar
  32. 32.
    I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient smart windows. J. Appl. Phys. 60, 123–159 (1986)CrossRefGoogle Scholar
  33. 33.
    T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35–S44 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    L. Holland, G. Siddall, The properties of some reactively sputtered metal oxide films. Vacuum 3(4), 375–391 (1953)CrossRefGoogle Scholar
  35. 35.
    D. Ginley, H. Hosono, D.C. Paine (eds.), Handbook of Transparent Conductors (Springer, Berlin, 2011)Google Scholar
  36. 36.
    X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRefGoogle Scholar
  37. 37.
    P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Graphene-based liquid crystal device. Nano Lett. 8(6), 1704–1708 (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRefGoogle Scholar
  39. 39.
    L.J. Cote, F. Kim, J. Huang, Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043–1049 (2009)CrossRefGoogle Scholar
  40. 40.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  41. 41.
    A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)CrossRefGoogle Scholar
  42. 42.
    N.D. Matyba, P. Yamaguchi, H. Eda, G. Chhowalla, M. Edman, L.Y. Robinson, Graphene and mobile ions: the key to all plastic, solution processed light emitting devices. ACS Nano 4(2), 637–642 (2010)CrossRefGoogle Scholar
  43. 43.
    S. Forget, S. Chenais, A. Siove, Organic light-emitting diodes. Photochem. Photophys. Polym. Mater. 4(1), 309–350 (2010)Google Scholar
  44. 44.
    K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016)CrossRefGoogle Scholar
  45. 45.
    R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8(4), 1147–1298 (1979)CrossRefGoogle Scholar
  46. 46.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29(5), 2332–2340 (2017)CrossRefGoogle Scholar
  47. 47.
    R.H. Leach, R.J. Pierce, E.P. Hickman, M.J. Mackenzie, H.G. Smith (eds.), The Printing Ink Manual, 5th edn. (Springer, Dordrecht, 1993)Google Scholar
  48. 48.
    H. Kipphan (ed.), Handbook of Print Media: Technologies and Production Methods (Springer, Berlin, 2001)Google Scholar
  49. 49.
    F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)CrossRefGoogle Scholar
  50. 50.
    M.A.M. Leenen, V. Arning, H. Thiem, J. Steiger, R. Anselmann, Printable electronics: flexibility for the future. Phys. Status Solidi 206(4), 588–597 (2009)CrossRefGoogle Scholar
  51. 51.
    F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014)CrossRefGoogle Scholar
  52. 52.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  53. 53.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman. Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRefGoogle Scholar
  54. 54.
    A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRefGoogle Scholar
  55. 55.
    A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRefGoogle Scholar
  56. 56.
    D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRefGoogle Scholar
  57. 57.
    G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017)Google Scholar
  58. 58.
    T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J.M. Kim, C. Wang, C. Ducati, R. Sordan, F. Torrisi, Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8(1), 1202 (2017)Google Scholar
  59. 59.
    H. Sirringhaus, 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)CrossRefGoogle Scholar
  60. 60.
    K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran, T. Sekine, M. Mizukami, D. Kumaki, S. Tokito, Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014)CrossRefGoogle Scholar
  61. 61.
    S. Oktyabrsky, P. Ye (eds.), Fundamentals of III-V Semiconductor MOSFETs (Springer US, Boston, 2010)Google Scholar
  62. 62.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRefGoogle Scholar
  63. 63.
    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRefGoogle Scholar
  64. 64.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRefGoogle Scholar
  65. 65.
    F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRefGoogle Scholar
  66. 66.
    Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E.J.R. Kelleher, J.C. Travers, V. Nicolosi, A.C. Ferrari, A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 3(9), 653–660 (2010)CrossRefGoogle Scholar
  67. 67.
    M. Trushin, E.J.R. Kelleher, T. Hasan, Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes. Phys. Rev. B 94, 155301 (2016)CrossRefGoogle Scholar
  68. 68.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRefGoogle Scholar
  69. 69.
    R.I. Woodward, E.J. Kelleher, T.H. Runcorn, S.V. Popov, F. Torrisi, R.C.T. Howe, T. Hasan, Q-switched fiber laser with MoS2 saturable absorber, in CLEO: 2014, paper SM3H.6. OSA (2014)Google Scholar
  70. 70.
    M. Zhang, L. Huang, J. Chen, C. Li, G. Shi, Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 26(45), 7588–7592 (2014)CrossRefGoogle Scholar
  71. 71.
    R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Zhang, G. Hu, G. Hu, R.C.T. Howe, L. Chen, Z. Zheng, T. Hasan, Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 5, 17482 (2015)CrossRefGoogle Scholar
  73. 73.
    F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRefGoogle Scholar
  74. 74.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRefGoogle Scholar
  75. 75.
    M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRefGoogle Scholar
  76. 76.
    K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C. Gao, Y.-S. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo, X. Duan, Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262 (2017)Google Scholar
  77. 77.
    Y. Yao, L. Tolentino, Z. Yang, X. Song, W. Zhang, Y. Chen, C.-P. Wong, High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23(28), 3577–3583 (2013)CrossRefGoogle Scholar
  78. 78.
    S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRefGoogle Scholar
  79. 79.
    P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis, P. O’Brien, B. Derby, Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599 (2018)CrossRefGoogle Scholar
  80. 80.
    X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li, W.-Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7(24), 13707–13713 (2015)CrossRefGoogle Scholar
  81. 81.
    S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018)CrossRefGoogle Scholar
  82. 82.
    V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010)CrossRefGoogle Scholar
  83. 83.
    M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 166–167, 172–176 (2012)CrossRefGoogle Scholar
  84. 84.
    L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, W. Shi, Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 6(10), 7426–7433 (2014)CrossRefGoogle Scholar
  85. 85.
    B.W. Kennedy, Thin film temperature sensor. Rev. Sci. Instrum. 40(9), 1169–1172 (1969)CrossRefGoogle Scholar
  86. 86.
    W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi, M. Li, S. Wang, R. Ma, S.H. Jin, Z. Kang, Y. Huang, J.A. Rogers, Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)CrossRefGoogle Scholar
  87. 87.
    D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014)CrossRefGoogle Scholar
  88. 88.
    T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mat. 28(22), 1800480 (2018)CrossRefGoogle Scholar
  89. 89.
    C. Bali, A. Brandlmaier, A. Ganster, O. Raab, J. Zapf, A. Hübler, Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT:PSS Mater. Today Proc. 3(3), 739–745 (2016)CrossRefGoogle Scholar
  90. 90.
    J.Y. Hong, W. Kim, D. Choi, J. Kong, H.S. Park, Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10, 9446–9455 (2016)CrossRefGoogle Scholar
  91. 91.
    K. Agarwal, V. Kaushik, D. Varandani, A. Dhar, B.R. Mehta, Nanoscale thermoelectric properties of Bi2Te3-graphene nanocomposites: conducting atomic force, scanning thermal and kelvin probe microscopy studies. J. Alloys Compd. 681, 394–401 (2016)CrossRefGoogle Scholar
  92. 92.
    T. Vuorinen, J. Niittynen, T. Kankkunen, T.M. Kraft, M. Mäntysalo, Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 6(1), 35289 (2016)Google Scholar
  93. 93.
    D. Zang, M. Yan, S. Ge, L. Ge, J. Yu, A disposable simultaneous electrochemical sensor array based on a molecularly imprinted film at a NH2-graphene modified screen-printed electrode for determination of psychotropic drugs. Analyst 138, 2704–2711 (2013)CrossRefGoogle Scholar
  94. 94.
    M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)CrossRefGoogle Scholar
  95. 95.
    E.E. Simmons Jr., Patent, US2393714A, Strain Gauge, 1941-07-23Google Scholar
  96. 96.
    B. Stephen, E. Graham, K. Michael, W. Neil, MEMS Mechanical Sensors (Artech House, London, 2004)Google Scholar
  97. 97.
    S.-H. Bae, Y. Lee, B.K. Sharma, H.-J. Lee, J.-H. Kim, J.-H. Ahn, Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013)CrossRefGoogle Scholar
  98. 98.
    Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014)CrossRefGoogle Scholar
  99. 99.
    M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRefGoogle Scholar
  100. 100.
    V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21(34), 12626 (2011)CrossRefGoogle Scholar
  101. 101.
    C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)CrossRefGoogle Scholar
  102. 102.
    C. Casiraghi, M. Macucci, K. Parvez, R. Worsley, Y. Shin, F. Bronte, C. Borri, M. Paggi, G. Fiori, Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129, 462–467 (2018)CrossRefGoogle Scholar
  103. 103.
    S. Zhao, J. Li, D. Cao, G. Zhang, J. Li, K. Li, Y. Yang, W. Wang, Y. Jin, R. Sun, C.P. Wong, Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl. Mater. Interfaces 9(14), 12147–12164 (2017)CrossRefGoogle Scholar
  104. 104.
    K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, V. Khranovskyy, Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016)CrossRefGoogle Scholar
  105. 105.
    J. Li, F. Rossignol, J. Macdonald, Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip 15(12), 2538–2558 (2015)CrossRefGoogle Scholar
  106. 106.
    K. Haupt Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000)CrossRefGoogle Scholar
  107. 107.
    F.Y. Kong, S.X. Gu, W.W. Li, T.T. Chen, Q. Xu, W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens. Bioelectron. 56, 77–82 (2014)CrossRefGoogle Scholar
  108. 108.
    Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187, 28–38 (2017)CrossRefGoogle Scholar
  109. 109.
    A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)CrossRefGoogle Scholar
  110. 110.
    R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938 (2011)CrossRefGoogle Scholar
  111. 111.
    M. Yilmaz, P.T. Krein, Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28(5), 2151–2169 (2013)CrossRefGoogle Scholar
  112. 112.
    L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)CrossRefGoogle Scholar
  113. 113.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRefGoogle Scholar
  114. 114.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRefGoogle Scholar
  115. 115.
    A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1(6), 621 (2008)CrossRefGoogle Scholar
  116. 116.
    A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRefGoogle Scholar
  117. 117.
    C. Daniel, J.O. Besenhard (eds.), Handbook of Battery Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)Google Scholar
  118. 118.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 172 (2012)CrossRefGoogle Scholar
  119. 119.
    J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M.G. Betti, R. Cingolani, M. Gemmi, C. Mariani, S. Panero, V. Pellegrini, B. Scrosati, An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14(8), 4901–4906 (2014)CrossRefGoogle Scholar
  120. 120.
    B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017)Google Scholar
  121. 121.
    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2014)CrossRefGoogle Scholar
  122. 122.
    X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013)CrossRefGoogle Scholar
  123. 123.
    M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRefGoogle Scholar
  124. 124.
    T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling LiO2 batteries via LiOH formation and decomposition. Science 350(6260), 530–533 (2015)CrossRefGoogle Scholar
  125. 125.
    J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)CrossRefGoogle Scholar
  126. 126.
    H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)CrossRefGoogle Scholar
  127. 127.
    Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)CrossRefGoogle Scholar
  128. 128.
    G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016)CrossRefGoogle Scholar
  129. 129.
    Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014)CrossRefGoogle Scholar
  130. 130.
    N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 6, 1601372 (2016)CrossRefGoogle Scholar
  131. 131.
    J. Li, V. Mishukova, M. Östling, All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes. Appl. Phys. Lett. 109(12), 123901 (2016)CrossRefGoogle Scholar
  132. 132.
    G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009)CrossRefGoogle Scholar
  133. 133.
    E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRefGoogle Scholar
  134. 134.
    Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)CrossRefGoogle Scholar
  135. 135.
    J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang, W. Zhang, Sn4+Ion decorated highly conductive Ti3C2MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016)CrossRefGoogle Scholar
  136. 136.
    X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015)CrossRefGoogle Scholar
  137. 137.
    X. Zhao, M. Liu, Y. Chen, B. Hou, N. Zhang, B. Chen, N. Yang, K. Chen, J. Li, L. An, Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 3(15), 7870–7876 (2015)CrossRefGoogle Scholar
  138. 138.
    C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRefGoogle Scholar
  139. 139.
    M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)CrossRefGoogle Scholar
  140. 140.
    L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRefGoogle Scholar
  141. 141.
    W.J. Hyun, E.B. Secor, C.-H. Kim, M.C. Hersam, L.F. Francis, C.D. Frisbie, Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 7(17), 1700285 (2017)CrossRefGoogle Scholar
  142. 142.
    A.M.A. Yeates, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, G. Stephen, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 35016 (2017)Google Scholar
  143. 143.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRefGoogle Scholar
  144. 144.
    G.-T. Esther, B. Suelen, F. Jaime, B. Robert, E. Salvador, D. Eleonora, M.R. Christopher, G. Francisco, S. Eduardo, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)CrossRefGoogle Scholar
  145. 145.
    Y. Lin, F. Liu, G. Casano, R. Bhavsar, I.A. Kinloch, B. Derby, Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28(36), 7993–8000 (2016)CrossRefGoogle Scholar
  146. 146.
    C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016)CrossRefGoogle Scholar
  147. 147.
    C.W. Foster, M.P. Down, Y. Zhang, X. Ji, S.J. Rowley-Neale, G.C. Smith, P.J. Kelly, C.E. Banks, 3D printed graphene based energy storage devices. Sci. Rep. 7, 42233 (2017)CrossRefGoogle Scholar
  148. 148.
    S. Ke Wei, T.S. Ahn, B.Y. Seo, J.Y. Dillon, S.J. Lewis, A. Jennifer, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25(33), 4539–4543 (2013)CrossRefGoogle Scholar
  149. 149.
    F.K. Wang, Y. Yan, C. Yao, Y. Chen, Y. Dai, J. Lacey, S. Wang, Y. Wan, J. Li, T. Wang, Z. Xu, Y. Hu, Y. Liangbing, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28(13), 2587–2594 (2016)CrossRefGoogle Scholar
  150. 150.
    A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015)CrossRefGoogle Scholar
  151. 151.
    B.P. Singh, S. Nayak, K.K. Nanda, B.K. Jena, S. Bhattacharjee, L. Besra, The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 61, 47–56 (2013)CrossRefGoogle Scholar
  152. 152.
    R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, M. Majumder, Protecting copper from electrochemical degradation by graphene coating. Carbon 50(11), 4040–4045 (2012)CrossRefGoogle Scholar
  153. 153.
    N.T. Kirkland, T. Schiller, N. Medhekar, N. Birbilis, Exploring graphene as a corrosion protection barrier. Corros. Sci. 56, 1–4 (2012)CrossRefGoogle Scholar
  154. 154.
    M. Topsakal, H. Aahin, S. Ciraci, Graphene coatings: an efficient protection from oxidation. Phys. Rev. B: Condens. Matter Mater. Phys. 85(15), 155445 (2012)Google Scholar
  155. 155.
    M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7(7), 5763–5768 (2013)CrossRefGoogle Scholar
  156. 156.
    M.J. Nine, M.A. Cole, L. Johnson, D.N.H. Tran, D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl. Mater. Interfaces 7(51), 28482–28493 (2015)CrossRefGoogle Scholar
  157. 157.
    S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7(11), 728–732 (2012)CrossRefGoogle Scholar
  158. 158.
    V.R.S.S. Mokkapati, D.Y. Koseoglu-Imer, N. Yilmaz-Deveci, I. Mijakovic, I. Koyuncu, Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent RSC Adv. 7(8), 4378–4386 (2017)CrossRefGoogle Scholar
  159. 159.
    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)CrossRefGoogle Scholar
  160. 160.
    L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)CrossRefGoogle Scholar
  161. 161.
    S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)CrossRefGoogle Scholar
  162. 162.
    W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)CrossRefGoogle Scholar
  163. 163.
    J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009)CrossRefGoogle Scholar
  164. 164.
    R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172), 752–754 (2014)CrossRefGoogle Scholar
  165. 165.
    J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRefGoogle Scholar
  166. 166.
    L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leonard W. T. Ng
    • 1
  • Guohua Hu
    • 1
  • Richard C. T. Howe
    • 1
  • Xiaoxi Zhu
    • 1
  • Zongyin Yang
    • 1
  • Christopher G. Jones
    • 2
  • Tawfique Hasan
    • 1
  1. 1.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK
  2. 2.Novalia Ltd.CambridgeUK

Personalised recommendations