Advertisement

Printing Technologies

  • Leonard W. T. Ng
  • Guohua Hu
  • Richard C. T. Howe
  • Xiaoxi Zhu
  • Zongyin Yang
  • Christopher G. Jones
  • Tawfique Hasan
Chapter

Abstract

Printing is a mature, ubiquitous industry and is used extensively across the globe for mass producing a wide range of decorative products; from books and magazines through to packaging, advertising posters and even automobile dials. This chapter will provide an in-depth description of four of the most widely used methods: inkjet, screen, gravure and flexographic printing. In addition, 3D printing as a deposition method will also be discussed. The chapter includes an overview of the vital parameters of note for each of the different printing methods and gives a quantitative description of the different interactions within individual printing systems. Finally, generic starting formulations of 2D material inks unique to each printing method are also provided.

References

  1. 1.
    K. Suganuma, Printing Technology. SpringerBriefs (Springer, Berlin, 2014)Google Scholar
  2. 2.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)CrossRefGoogle Scholar
  3. 3.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop. Phys. Rev. E 62(1), 756–765 (2000)CrossRefGoogle Scholar
  4. 4.
    J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18(2), 229–234 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Hu, R.G. Larson, Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110(14), 7090–7094 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Hu, R.G. Larson, Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21(9), 3972–3980 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Wang, Z. Wang, L. Huang, A. Mitra, Y. Yan, Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17(9), 2572–2574 (2001)CrossRefGoogle Scholar
  8. 8.
    H. Liu, W. Xu, W. Tan, X. Zhu, J. Wang, J. Peng, Y. Cao, Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. J. Colloid Interface Sci. 465, 106–111 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRefGoogle Scholar
  10. 10.
    G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017)Google Scholar
  11. 11.
    G.L. Robertson, Food Packaging: Principles and Practice, 3rd edn. (CRC Press, Boca Raton, 2012)Google Scholar
  12. 12.
    J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226–237 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Huh, R.L. Reed, A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid Interface Sci. 91(2), 472–484 (1983)CrossRefGoogle Scholar
  14. 14.
    C.E. Stauffer, The measurement of surface tension by the pendant drop technique. J. Phys. Chem. 69(6), 1933–1938 (1965)CrossRefGoogle Scholar
  15. 15.
    Kruss Website Glossary, https://www.kruss.de/services/education-theory/glossary. Accessed 10 June 2017
  16. 16.
    K. Kabza, J.E. Gestwicki, J.L. McGrath, Contact angle goniometry as a tool for surface tension measurements of solids, using Zisman plot method. A physical chemistry experiment. J. Chem. Educ. 77(1), 63–65 (2000)CrossRefGoogle Scholar
  17. 17.
    W.A. Zisman, Relation of the equilibrium contact angle to liquid and solid constitution, in Contact Angle, Wettability, and Adhesion, vol. 43 (American Chemical Society, 1964), pp. 1–51Google Scholar
  18. 18.
    S. Magdassi, The Chemistry of Inkjet Inks (World Scientific, Singapore, 2009)CrossRefGoogle Scholar
  19. 19.
    I.M. Hutchings, G.D. Martin (eds.), Inkjet Technology for Digital Fabrication (Wiley, Hoboken, 2012)Google Scholar
  20. 20.
    J.G. Korvink, P.J. Smith, D.-Y. Shin (eds.), Inkjet-Based Micromanufacturing (Wiley-VCH, Weinheim, 2012)Google Scholar
  21. 21.
    P. Calvert, Inkjet printing for materials and devices. Chem. Mater. 13(10), 3299–3305 (2001)CrossRefGoogle Scholar
  22. 22.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Tekin, P.J. Smith, U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4), 703 (2008)CrossRefGoogle Scholar
  24. 24.
    B.-J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)CrossRefGoogle Scholar
  25. 25.
    R.H. Leach, R.J. Pierce, The Printing Ink Manual (Springer, Amsterdam, 1993)Google Scholar
  26. 26.
    B. Derby, Inkjet printing of functional and structural materials: fluid property requirements feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018)CrossRefGoogle Scholar
  28. 28.
    T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mat. 28(22), 1800480 (2018)CrossRefGoogle Scholar
  29. 29.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRefGoogle Scholar
  31. 31.
    A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRefGoogle Scholar
  32. 32.
    D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRefGoogle Scholar
  33. 33.
    V. Bianchi, T. Carey, L. Viti, L. Li, E.H. Linfield, A.G. Davies, A. Tredicucci, D. Yoon, P.G. Karagiannidis, L. Lombardi, F. Tomarchio, A.C. Ferrari, F. Torrisi, M.S. Vitiello, Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat. Commun. 8, 15763 (2017)CrossRefGoogle Scholar
  34. 34.
    F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRefGoogle Scholar
  35. 35.
    R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)Google Scholar
  36. 36.
    D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5(1), 17374 (2015)Google Scholar
  38. 38.
    H. Kipphan (ed.), Handbook of Print Media (Springer, Berlin, 2001)Google Scholar
  39. 39.
    G.D. Martin, S.D. Hoath, I.M. Hutchings, Inkjet printing - the physics of manipulating liquid jets and drops. J. Phys. Conf. Ser. 105, 012001 (2008)Google Scholar
  40. 40.
    D. Jang, D. Kim, J. Moon, Influence of fluid physical properties on ink-jet printability. Langmuir 25(5), 2629–2635 (2009)CrossRefGoogle Scholar
  41. 41.
    J.E. Fromm, Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28(3), 322–333 (1984)CrossRefGoogle Scholar
  42. 42.
    Y. Aleeva, B. Pignataro, Recent advances in upscalable wet methods and ink formulations for printed electronics. J. Mater. Chem. C 2(32), 6436 (2014)CrossRefGoogle Scholar
  43. 43.
    D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)CrossRefGoogle Scholar
  44. 44.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Xu, I. Hennig, D. Freyberg, A. James Strudwick, M. Georg Schwab, T. Weitz, K. Chih-Pei Cha, Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources 248, 483–488 (2014)CrossRefGoogle Scholar
  47. 47.
    J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)CrossRefGoogle Scholar
  48. 48.
    A.G. Kelly, D. Finn, A. Harvey, T. Hallam, J.N. Coleman, All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109(2), 023107 (2016)CrossRefGoogle Scholar
  49. 49.
    K. Arapov, R. Abbel, G. de With, H. Friedrich, Inkjet printing of graphene. Faraday Discuss. 173, 323–336 (2014)CrossRefGoogle Scholar
  50. 50.
    J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRefGoogle Scholar
  51. 51.
    E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRefGoogle Scholar
  52. 52.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Scherp, S.J.D. Ericsson, US4267773 - Silkscreen Printing Machine (1981)Google Scholar
  54. 54.
    S.J.D. Ericsson, US4226181 - Method and apparatus for adjusting the position of a stencil relative to a printing table (1980)Google Scholar
  55. 55.
    B. Kang, W.H. Lee, K. Cho, Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 5(7), 2302–2315 (2013)CrossRefGoogle Scholar
  56. 56.
    H. Lievens, Wide web coating of complex materials. Surf. Coat. Technol. 76–77, 744–753 (1995)CrossRefGoogle Scholar
  57. 57.
    S.J.D. Ericsson, US4485447 - Method and arrangement for registration of a print on a material (1977)Google Scholar
  58. 58.
    W.J. Hyun, E.B. Secor, G.A. Rojas, M.C. Hersam, L.F. Francis, C.D. Frisbie, All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 27(44), 7058–7064 (2015)CrossRefGoogle Scholar
  59. 59.
    C. Karuwan, A. Wisitsoraat, P. Chaisuwan, D. Nacapricha, A. Tuantranont, W.C. Hooper, V. Vaccarino, R.W. Alexander, D.G. Harrison, A.A. Quyyumi, Screen-printed graphene-based electrochemical sensors for a microfluidic device. Anal. Methods 9(24), 3689–3695 (2017)CrossRefGoogle Scholar
  60. 60.
    R.F. Rosu, R.A. Shanks, S.N. Bhattacharya, Shear rheology and thermal properties of linear and branched poly (ethylene terephthalate) blends. Polymer 40, 5891–5898 (1999)CrossRefGoogle Scholar
  61. 61.
    M.J. Barker, Screen inks, in The Printing Ink Manual, Chap. 10, ed. by R. Leach (Society of British Printing Ink Manufacturers, Edinburgh, 1999), pp. 599–635Google Scholar
  62. 62.
    L. Dybowska-Sarapuk, D. Janczak, G. Wróblewski, M. Słoma, M. Jakubowska, The influence of graphene screen printing paste’s composition on its viscosity. Proc. SPIE 9662, 966242 (2015)Google Scholar
  63. 63.
    J.A. Owczarek, F.L. Howland, A study of the off-contact screen printing process—part I: model of the printing process and some results derived from experiments. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(2), 358–367 (1990)CrossRefGoogle Scholar
  64. 64.
    D. He, Modelling and computer simulation of the behaviour of solder paste in stencil printing for surface mount assembly. PhD thesis, University of Salford, 1998Google Scholar
  65. 65.
    N. Kapur, S.J. Abbott, E.D. Dolden, P.H. Gaskell, Predicting the behavior of screen printing. IEEE Trans. Compon. Packag. Manuf. Technol. 3(3), 508–515 (2013)CrossRefGoogle Scholar
  66. 66.
    A. Goldschmidt, H.-J. Streitburger, BASF Handbook on Basics of Coating Technology (William Andrew, Norwich, 2003)Google Scholar
  67. 67.
    E.W. Flick, Printing inks, in Printing Ink and Overprint Varnish Formulations, 2nd edn. (Elsevier, New York, 1999), pp. 1–61Google Scholar
  68. 68.
    D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 5382–5388 (2011)CrossRefGoogle Scholar
  69. 69.
    K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26(4), 586–593 (2016)CrossRefGoogle Scholar
  70. 70.
    Y. Xu, M.G. Schwab, A.J. Strudwick, I. Hennig, X. Feng, Z. Wu, K. Müllen, Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 3(8), 1035–1040 (2013)CrossRefGoogle Scholar
  71. 71.
    S.J. Rowley-Neale, G.C. Smith, C.E. Banks, Mass-producible 2D-MoS2 -impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(27), 22539–22548 (2017)CrossRefGoogle Scholar
  72. 72.
    Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187, 28–38 (2017)CrossRefGoogle Scholar
  73. 73.
    A.M. Abdelkader, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, S.G.Yeates, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 35016 (2017)CrossRefGoogle Scholar
  74. 74.
    A.M. Joseph, B. Nagendra, E. Bhoje Gowd, K.P. Surendran, Screen-printable electronic ink of ultrathin boron nitride nanosheets. ACS Omega 1(6), 1220–1228 (2016)CrossRefGoogle Scholar
  75. 75.
    K.I. Bardin, US4003311 - Gravure printing method (1977)Google Scholar
  76. 76.
    M. Lahti, S. Leppävuori, V. Lantto, Gravure-offset-printing technique for the fabrication of solid films. Appl. Surf. Sci. 142(1), 367–370 (1999)CrossRefGoogle Scholar
  77. 77.
    C. Deus, J. Salomon, U. Wehner, Roll-to-roll coating of flexible glass: equipment, layer stacks and applications. Vak. Forsch. Prax. 28(4), 40–44 (2016)CrossRefGoogle Scholar
  78. 78.
    E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRefGoogle Scholar
  79. 79.
    H.A.D. Nguyen, C. Lee, K.-H. Shin, D. Lee, An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printing. IEEE Trans. Compon. Packag. Manuf. Technol. 5(10), 1516–1524 (2015)CrossRefGoogle Scholar
  80. 80.
    H.A.D. Nguyen, J. Lee, C.H. Kim, K.-H. Shin, D. Lee, An approach for controlling printed line-width in high resolution roll-to-roll gravure printing. J. Micromech. Microeng. 23(9), 095010 (2013)CrossRefGoogle Scholar
  81. 81.
    M.E. Schrader, Young-Dupre revisited. Langmuir 11(9), 3585–3589 (1995)CrossRefGoogle Scholar
  82. 82.
    A.W. Neumann, R.J. Good, C.J. Hope, M. Sejpal, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 49(2), 291–304 (1974)CrossRefGoogle Scholar
  83. 83.
    J.A. Martens, US5172072 - Flexographic printing plate process (1992)Google Scholar
  84. 84.
    R.N. Fan, US5719009 - Laser ablatable photosensitive elements utilized to make flexographic printing plates (1990)Google Scholar
  85. 85.
    T. Smith, Flexographic inks. Pigm. Resin Technol. 15(3), 11–12 (1986)CrossRefGoogle Scholar
  86. 86.
    Printwiki, Anilox roller, http://printwiki.org/Anilox_Roller. Accessed 25 May 2018
  87. 87.
    J. Baker, D. Deganello, D.T. Gethin, T.M. Watson, Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell. Mater. Res. Innov. 18(2), 86–90 (2014)CrossRefGoogle Scholar
  88. 88.
    Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen, W. Shi, Gravure printing of hybrid MoS2-rGO interdigitated electrodes for flexible microsupercapacitors. Appl. Phys. Lett. 107(1), 013906 (2015)CrossRefGoogle Scholar
  89. 89.
    New graphene based inks for high-speed manufacturing of printed electronics, http://www.cam.ac.uk/research/news/new-graphene-based-inks-for-high-speed-manufacturing-of-printed-electronics. Accessed 10 June 2017
  90. 90.
    D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.-H. Min, K. Kostarelos, Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25(16), 2258–2268 (2013)CrossRefGoogle Scholar
  91. 91.
    A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015)CrossRefGoogle Scholar
  92. 92.
    G.Y. Chen, D.W.P. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012)CrossRefGoogle Scholar
  93. 93.
    Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lina, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010)CrossRefGoogle Scholar
  94. 94.
    E.K. Wujcik, C.N. Monty, Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(3), 233–249 (2013)CrossRefGoogle Scholar
  95. 95.
    A. Fraczek-Szczypta, Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater. Sci. Eng. C 34(1), 35–49 (2014)CrossRefGoogle Scholar
  96. 96.
    C. Schubert, M.C. van Langeveld, L.A. Donoso, Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98(2), 159–61 (2014)CrossRefGoogle Scholar
  97. 97.
    D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016)CrossRefGoogle Scholar
  98. 98.
    K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28(13), 2587–2594 (2016)CrossRefGoogle Scholar
  99. 99.
    X. Yan, P. Gu, A review of rapid prototyping technologies and systems. Comput. Aided Des. 28(4), 307–318 (1996)CrossRefGoogle Scholar
  100. 100.
    P.M. Pandey, N.V. Reddy, S.G. Dhande, Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 43(1), 61–71 (2003)CrossRefGoogle Scholar
  101. 101.
    R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 118(1–3), 385–388 (2001)CrossRefGoogle Scholar
  102. 102.
    A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater. Des. 30(10), 4243–4252 (2009)CrossRefGoogle Scholar
  103. 103.
    D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38(10–11), 1257–1287 (1998)CrossRefGoogle Scholar
  104. 104.
    S.H. Masood, W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater. Des. 25(7), 587–594 (2004)CrossRefGoogle Scholar
  105. 105.
    J.-P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47(2), 525–540 (1998)CrossRefGoogle Scholar
  106. 106.
    A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)CrossRefGoogle Scholar
  107. 107.
    J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.-W. Lee, J.T. Kim, S.K. Seol, 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157–161 (2015)CrossRefGoogle Scholar
  108. 108.
    E. García-Tuñon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D’Elia, R.C. Maher, F. Guitian, E. Saiz, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)CrossRefGoogle Scholar
  109. 109.
    Q. Zhang, F. Zhang, S.P. Medarametla, C. Zhou, H. Li, D. Lin, 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leonard W. T. Ng
    • 1
  • Guohua Hu
    • 1
  • Richard C. T. Howe
    • 1
  • Xiaoxi Zhu
    • 1
  • Zongyin Yang
    • 1
  • Christopher G. Jones
    • 2
  • Tawfique Hasan
    • 1
  1. 1.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK
  2. 2.Novalia Ltd.CambridgeUK

Personalised recommendations