2D Ink Design

  • Leonard W. T. Ng
  • Guohua Hu
  • Richard C. T. Howe
  • Xiaoxi Zhu
  • Zongyin Yang
  • Christopher G. Jones
  • Tawfique Hasan


The use of two-dimensional (2D) materials in low-cost, high-throughput printing as a scalable production method relies heavily on its successful incorporation into printable ink systems. However, industrial scale production of 2D material printing inks has proven to be a significant challenge. This chapter begins with a brief history of inks and progresses to the basic ink formulations and the techniques used in traditional printing technologies. This chapter also discusses ink properties, processing techniques and optimisation of formulation parameters using methods such as Design of Experiments (DOE), and useful characterisation techniques when formulating 2D material inks. Finally, the chapter covers ink–substrate interaction and optimisation strategies for ink formulation.


  1. 1.
    R.H. Leach, R.J. Pierce, The Printing Ink Manual (Springer, Dordrecht, 1993)Google Scholar
  2. 2.
    D.N. Carvalho, Forty Centuries of Ink (BiblioLife, Charleston, 2008)Google Scholar
  3. 3.
    A. Goldschmidt, H.-J. Streitburger, BASF Handbook on Basics of Coating Technology (William Andrew, Norwich, 2003)Google Scholar
  4. 4.
    E.W. Flick, Printing Ink and Overprint Varnish Formulations, 2nd edn. (William Andrew, Norwich, 1999)Google Scholar
  5. 5.
    A. Tracton (ed.), Coatings Technology Handbook, 3rd edn. (CRC Press, West Palm Beach, 2005)Google Scholar
  6. 6.
    I.M. Hutchings, G.D. Martin (eds.), Inkjet Technology for Digital Fabrication (Wiley, Chichester, 2012)Google Scholar
  7. 7.
    H. Lievens, Wide web coating of complex materials. Surf. Coat. Technol. 76–77, 744–753 (1995)CrossRefGoogle Scholar
  8. 8.
    M. Lahti, S. Leppävuori, V. Lantto, Gravure-offset-printing technique for the fabrication of solid films. Appl. Surf. Sci. 142(1–4), 367–370 (1999)CrossRefGoogle Scholar
  9. 9.
    H.A.D. Nguyen, C. Lee, K.-H. Shin, D. Lee, An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printing. IEEE Trans. Compon. Packag. Manuf. Technol. 5(10), 1516–1524 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Smith, Flexographic inks. Pigm. Resin Technol. 15(3), 11–12 (1986)CrossRefGoogle Scholar
  11. 11.
    F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Kipphan (ed.), Handbook of Print Media (Springer, Berlin, 2001)Google Scholar
  13. 13.
    K. Suganuma, Printing Technology (Springer, New York, 2014)Google Scholar
  14. 14.
    H.-H. Lee, K.-S. Chou, K.-C. Huang, Inkjet printing of nanosized silver colloids. Nanotechnology 16(10), 2436–2441 (2005)CrossRefGoogle Scholar
  15. 15.
    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)CrossRefGoogle Scholar
  16. 16.
    B.-J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A.J. Flewitt, J. Robertson, G.W. Hsieh, F.M. Li, A. Nathan, A.C. Ferrari, W.I. Milne, Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 102(4), 043710 (2007)CrossRefGoogle Scholar
  18. 18.
    Z. Liu, Z.-B. Zhang, Q. Chen, L.-R. Zheng, S.-L. Zhang, Solution-processable nanotube/polymer composite for high-performance TFTs. IEEE Electron. Device Lett. 32(9), 1299–1301 (2011)CrossRefGoogle Scholar
  19. 19.
    Z. Liu, H. Li, Z. Qiu, S.-L. Zhang, Z.-B. Zhang, Small-hysteresis thin-film transistors achieved by facile dip-coating of nanotube/polymer composite. Adv. Mater. 24(27), 3633–3638 (2012)CrossRefGoogle Scholar
  20. 20.
    D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRefGoogle Scholar
  21. 21.
    F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRefGoogle Scholar
  22. 22.
    R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)Google Scholar
  23. 23.
    A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRefGoogle Scholar
  24. 24.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRefGoogle Scholar
  25. 25.
    V. Bianchi, T. Carey, L. Viti, L. Li, E.H. Linfield, A.G. Davies, A. Tredicucci, D. Yoon, P.G. Karagiannidis, L. Lombardi, F. Tomarchio, A.C. Ferrari, F. Torrisi, M.S. Vitiello, Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat. Commun. 8, 15763 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Torrisi, J.N. Coleman, Electrifying inks with 2D materials. Nat. Nanotechnol. 9(10), 738–739 (2014)CrossRefGoogle Scholar
  27. 27.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)CrossRefGoogle Scholar
  29. 29.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRefGoogle Scholar
  30. 30.
    E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRefGoogle Scholar
  31. 31.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29(5), 2332–2340 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4(7), 675–684 (2011)CrossRefGoogle Scholar
  33. 33.
    C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, A. Tuantranont, Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 22(12), 5478 (2012)CrossRefGoogle Scholar
  34. 34.
    T. Vuorinen, J. Niittynen, T. Kankkunen, T.M. Kraft, M. Mäntysalo, Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 6(1), 35289 (2016)Google Scholar
  35. 35.
    T.-L. Chang, Z.-C. Chen, S.-F. Tseng, Laser micromachining of screen-printed graphene for forming electrode structures. Appl. Surf. Sci. 374, 305–311 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Baker, D. Deganello, D.T. Gethin, T.M. Watson, Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell. Mater. Res. Innov. 18(2), 86–90 (2014)CrossRefGoogle Scholar
  37. 37.
    W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015)CrossRefGoogle Scholar
  38. 38.
    G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017)Google Scholar
  39. 39.
    S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5(1), 17374 (2015)Google Scholar
  40. 40.
    D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRefGoogle Scholar
  42. 42.
    Z. Cui, Printed Electronics (Wiley, Singapore, 2016)CrossRefGoogle Scholar
  43. 43.
    G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Gao, W. Shi, W. Wang, Y. Leng, Y. Zhao, Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53(43), 16777–16784 (2014)CrossRefGoogle Scholar
  45. 45.
    K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26(4), 586–593 (2016)CrossRefGoogle Scholar
  46. 46.
    V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRefGoogle Scholar
  48. 48.
    A.G. Kelly, D. Finn, A. Harvey, T. Hallam, J.N. Coleman, All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109(2), 023107 (2016)CrossRefGoogle Scholar
  49. 49.
    J.-L. Capelo-Martnez (ed.), Ultrasound in Chemistry (Wiley-VCH Verlag, Weinheim, 2008)Google Scholar
  50. 50.
    A. Pattammattel, C.V. Kumar, Kitchen chemistry 101: multigram production of high quality biographene in a blender with edible proteins. Adv. Funct. Mater. 25(45), 7088–7098 (2015)CrossRefGoogle Scholar
  51. 51.
    P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRefGoogle Scholar
  52. 52.
    R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)CrossRefGoogle Scholar
  53. 53.
    D.H. Dalwadi, C. Canet, N. Roye, K. Hedman, Rheology: an important tool in ink development. Am. Lab. 37(23), 18 (2005)Google Scholar
  54. 54.
    A. Davey, T. Guthrie, C. Haip, Flow properties of fluid systems. Surf. Coat. Int. 1991(7), 329–339 (1991)CrossRefGoogle Scholar
  55. 55.
    F. Coquel, E. Godlewski, N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22(8), 1250014 (2012)MathSciNetCrossRefGoogle Scholar
  56. 56.
    D.V. Boger, An introduction to rheology. J. Non-Newtonian Fluid Mech. 32(3), 331–333 (1989)CrossRefGoogle Scholar
  57. 57.
    H. Green, Rheological properties of paints, varnishes, lacquers, and printing inks. J. Colloid Sci. 2(1), 93–98 (1947)CrossRefGoogle Scholar
  58. 58.
    Z. Żołek-Tryznowska, Printing on Polymers (Elsevier, Amsterdam, 2016)CrossRefGoogle Scholar
  59. 59.
    R. Buchdahl, J.E. Thimm, The relationship between the rheological properties and working properties of printing inks. J. Appl. Phys. 16(6), 344 (1945)CrossRefGoogle Scholar
  60. 60.
    A. Eich, Visco Handbook (SI Analytics GmbH, Mainz, 2015)Google Scholar
  61. 61.
    H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)Google Scholar
  62. 62.
    T.I. Gudkova, L.A. Kozarovitskii, The relation between rheological properties of printing inks and their behavior in the printing process. Nauch. Trudy Moskov. Poligraf. Inst. 11, 219–245 (1959)Google Scholar
  63. 63.
    T. Hartford, Rheological measurement of printing ink. Vehicles at low shear conditions. Am. Ink Maker 72(11, Pt. 1), 42–49 (1994)Google Scholar
  64. 64.
    P. Oittinen, O. Perila, Rheological properties of printing inks. I. Flow curve behavior and tack. Suomen Kemistilehti B 45(3), 95–99 (1972)Google Scholar
  65. 65.
    P. Oittinen, O. Perila, Rheological properties of printing inks. II. Flow curve and tack behavior and the picking of paper. Suomen Kemistilehti B 45(3), 100–104 (1972)Google Scholar
  66. 66.
    P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluids. Int. Nano Lett. 4(4), 109–120 (2014)CrossRefGoogle Scholar
  67. 67.
    H. Pahlke, Rheological behavior of printing inks. Farbe + Lack 75(3), 236–243 (1969)Google Scholar
  68. 68.
    K. Watanabe, T. Amari, Rheological properties of coatings during drying processes. J. Appl. Polym. Sci. 32(2), 3435–3443 (1986)CrossRefGoogle Scholar
  69. 69.
    H.C. Hamaker, The London–van der Waals attraction between spherical particles. Physica 4(10), 1058–1072 (1937)CrossRefGoogle Scholar
  70. 70.
    B.N. Shakhkel’dyan, The rheological properties of printing inks. Kolloidn. Zh. 18, 111–119 (1956)Google Scholar
  71. 71.
    M. Black, L. Lin, J. Guthrie, Electrochemical sensors, US5658444A (1997)Google Scholar
  72. 72.
    W. Herbst, T. Hofheim, A. Rudolphy, H. Peter Simson, US3950288 - Pigment Compositions in Paste or Powder Form. Wiesbaden (1998)Google Scholar
  73. 73.
    L. Lin, Mechanisms of pigment dispersion. Pigm. Resin Technol. 32(2), 78–88 (2003)CrossRefGoogle Scholar
  74. 74.
    D.L. Zhang, Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49(3–4), 537–560 (2004)CrossRefGoogle Scholar
  75. 75.
    I. Bratkowska, W. Zwierzykowski, Effect of raw materials on rheological properties of carbon black dispersion in mineral oil used for printing inks production. Przem. Chem. 66(8), 393–395 (1987)Google Scholar
  76. 76.
    A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284–5318 (2012)CrossRefGoogle Scholar
  77. 77.
    F.M. Fowkes (ed.), Contact Angle, Wettability, and Adhesion. Advances in Chemistry, vol. 43 (American Chemical Society, Washington, 1964)Google Scholar
  78. 78.
    R.J. Good, A thermodynamic derivation of Wenzel’s modification of Young’s equation for contact angles; together with a theory of hysteresis. J. Am. Chem. Soc. 74(20), 5041–5042 (1952)CrossRefGoogle Scholar
  79. 79.
    L.R. White, On deviations from Young’s equation. J. Chem. Soc. Faraday Trans. 1 F 73, 390–398 (1977)CrossRefGoogle Scholar
  80. 80.
    J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226–237 (2015)CrossRefGoogle Scholar
  81. 81.
    G.L. Robertson, Food Packaging: Principles and Practice, 3rd edn. (CRC Press, Boca Raton,2012)Google Scholar
  82. 82.
    D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 81(3), 167–249 (1999)CrossRefGoogle Scholar
  83. 83.
    W.C. Wake, Theories of adhesion and uses of adhesives: a review. Polymer 19(3), 291–308 (1978)CrossRefGoogle Scholar
  84. 84.
    R.C. Tolman, The effect of droplet size on surface tension. J. Chem. Phys. 17(3), 333 (1949)CrossRefGoogle Scholar
  85. 85.
    D. Zhang, L.C. Wadsworth, Corona treatment of polyolefin films - a review. Adv. Polym. Technol. 18(2), 171–180 (1999)Google Scholar
  86. 86.
    Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93(1), 169–183 (1983)CrossRefGoogle Scholar
  87. 87.
    O.I. del Río, A.W. Neumann, Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Interface Sci. 196(2), 136–147 (1997)Google Scholar
  88. 88.
    M.D. Pashley, J.B. Pethica, D. Tabor, Adhesion and micromechanical properties of metal surfaces. Wear 100(1–3), 7–31 (1984)CrossRefGoogle Scholar
  89. 89.
    P.E. Thomas, G.E. Raley, Corona treatment of perforated film, US4351784A (1982)Google Scholar
  90. 90.
    L.-H. Lee (ed.), Fundamentals of Adhesion (Springer, New York, 1991)Google Scholar
  91. 91.
    H. Krupp, Theory of adhesion of small particles. J. Appl. Phys. 37(11), 4176 (1966)CrossRefGoogle Scholar
  92. 92.
    C.Y. Kim, D.A.I. Goring, Surface morphology of polyethylene after treatment in a corona discharge. J. Appl. Polym. Sci. 15(6), 1357–1364 (1971)CrossRefGoogle Scholar
  93. 93.
    J. Gassan, Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos. Sci. Technol. 60(15), 2857–2863 (2000)CrossRefGoogle Scholar
  94. 94.
    J. Ferrante, J.R. Smith, Metal interfaces: adhesive energies and electronic barriers. Solid State Commun. 20(4), 393–396 (1976)CrossRefGoogle Scholar
  95. 95.
    P. Cheng, D. Li, L. Boruvka, Y. Rotenberg, A.W. Neumann, Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids Surf. 43(2), 151–167 (1990)CrossRefGoogle Scholar
  96. 96.
    J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetCrossRefGoogle Scholar
  97. 97.
    M. Bousmina, Comparing the effect of corona treatment and block copolymer addition on rheological properties of polystyrene/polyethylene blends. J. Rheol. 39(3), 499 (1995)CrossRefGoogle Scholar
  98. 98.
    J.N. Anand, Re: contact theory of adhesion. J. Adhes. 5(3), 265–267 (1973)CrossRefGoogle Scholar
  99. 99.
    W. Chen, R.H.W. Lam, J. Fu, Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab. Chip 12(2), 391–395 (2012)CrossRefGoogle Scholar
  100. 100.
    K.K. Hockman, D. Berengut, Design of experiments. Chem. Eng. 102(11), 142 (1995)Google Scholar
  101. 101.
    J.A. Jacquez, Design of experiments. J. Frankl. Inst. 3358(2), 259–279 (1998)MathSciNetCrossRefGoogle Scholar
  102. 102.
    M.J. Anderson, P.J. Whitcomb, Design of experiments, in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, London, 2010)Google Scholar
  103. 103.
    G. Vicente, A. Coteron, M. Martinez, J. Aracil, Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind. Crops Prod. 8(1), 29–35 (1998)CrossRefGoogle Scholar
  104. 104.
    T.P. Ryan, Modern Experimental Design (Wiley, London, 2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leonard W. T. Ng
    • 1
  • Guohua Hu
    • 1
  • Richard C. T. Howe
    • 1
  • Xiaoxi Zhu
    • 1
  • Zongyin Yang
    • 1
  • Christopher G. Jones
    • 2
  • Tawfique Hasan
    • 1
  1. 1.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK
  2. 2.Novalia Ltd.CambridgeUK

Personalised recommendations