Advertisement

2D Material Production Methods

  • Leonard W. T. Ng
  • Guohua Hu
  • Richard C. T. Howe
  • Xiaoxi Zhu
  • Zongyin Yang
  • Christopher G. Jones
  • Tawfique Hasan
Chapter

Abstract

The widespread use of printing of 2D materials in their relevant applications is highly dependent on the cost and scalability of their methods of production. This chapter serves as an introduction to the key methods for 2D material production and characterisation. Methods such as chemical vapour deposition, plasma cracking of hydrocarbons, intercalation, chemical exfoliation and liquid phase exfoliation are described and their relative merits are discussed. Particular emphasis is given to the 2D materials relevant to ink production. The latter half of the chapter discusses commonly used processing steps and characterisation methods for the 2D materials and their respective roles in qualifying and quantifying the material produced.

References

  1. 1.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015)CrossRefGoogle Scholar
  6. 6.
    Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4), 3468–3480 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7(11), 10344–10353 (2013)CrossRefGoogle Scholar
  9. 9.
    R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273(1352), 69–83 (1963)CrossRefGoogle Scholar
  10. 10.
    R.F. Frindt, Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 140(2A), A536–A539 (1965)CrossRefGoogle Scholar
  11. 11.
    R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966)CrossRefGoogle Scholar
  12. 12.
    X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999)CrossRefGoogle Scholar
  13. 13.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRefGoogle Scholar
  15. 15.
    X. Chen, B. Wu, Y. Liu, Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 45(8), 2057–2074 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, X.L. Gong, J.-G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3(8), 1500343 (2016)CrossRefGoogle Scholar
  17. 17.
    N. Petrone, C.R. Dean, I. Meric, A.M. van der Zande, P.Y. Huang, L. Wang, D. Muller, K.L. Shepard, J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12(6), 2751–2756 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste. ACS Nano 5(9), 7601–7607 (2011)CrossRefGoogle Scholar
  19. 19.
    Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)CrossRefGoogle Scholar
  20. 20.
    K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13(4), 1852–1857 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013)CrossRefGoogle Scholar
  23. 23.
    Z.J. Qi, S.J. Hong, J.A. Rodríguez-Manzo, N.J. Kybert, R. Gudibande, M. Drndić, Y.W. Park, A.T. Charlie Johnson, Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride. Small 11(12), 1402–1408 (2015)CrossRefGoogle Scholar
  24. 24.
    W.J. Zhang, C.Y. Chan, K.M. Chan, I. Bello, Y. Lifshitz, S.T. Lee, Deposition of large-area, high-quality cubic boron nitride films by ECR-enhanced microwave-plasma CVD. Appl. Phys. Mater. Sci. Process. 76(6), 953–955 (2003)CrossRefGoogle Scholar
  25. 25.
    S.J. Cartamil-Bueno, M. Cavalieri, R. Wang, S. Houri, S. Hofmann, H.S.J. van der Zant, Mechanical characterization and cleaning of CVD single-layer h-BN resonators. NPJ 2D Mater. Appl. 1(1), 16 (2017)Google Scholar
  26. 26.
    A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, L. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8(11), 11522–11528 (2014)CrossRefGoogle Scholar
  27. 27.
    G.H. Han, J.A. Rodríguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner, Z.J. Qi, E.N. Dattoli, A.M. Rappe, M. Drndic, A.T.C. Johnson, Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7(11), 10129–10138 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, S.J. Kahng, J.Y. Choi, R.S. Ruoff, Y.J. Song, S. Lee, A platform for large-scale graphene electronics - CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)CrossRefGoogle Scholar
  29. 29.
    K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, S.W. Kim, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12(2), 714–718 (2012)CrossRefGoogle Scholar
  30. 30.
    K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaust, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)CrossRefGoogle Scholar
  31. 31.
    B.C. Bayer, S. Caneva, T.J. Pennycook, J. Kotakoski, C. Mangler, S. Hofmann, J.C. Meyer, Introducing overlapping grain boundaries in chemical vapor deposited hexagonal boron nitride monolayer films. ACS Nano 11(5), 4521–4527 (2017)CrossRefGoogle Scholar
  32. 32.
    T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)CrossRefGoogle Scholar
  33. 33.
    J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, E.M. Vogel, Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6(4), 3224–3229 (2012)CrossRefGoogle Scholar
  34. 34.
    L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12), 9927–9933 (2011)CrossRefGoogle Scholar
  36. 36.
    H. Zhang, T. Cao, Y. Cheng, Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma. Carbon 86, 38–45 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Tian, S. Batty, C. Shang, Synthesis of nanostructured carbons by the microwave plasma cracking of methane. Carbon 51(1), 243–248 (2013)CrossRefGoogle Scholar
  38. 38.
    K.S. Kim, S.H. Hong, K.-S. Lee, W.T. Ju, Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane. IEEE Trans. Plasma Sci. 35(2), 434–443 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Pristavita, J.L. Meunier, D. Berk, Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem. Plasma Process. 31(2), 393–403 (2011)CrossRefGoogle Scholar
  40. 40.
    A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8(7), 2012–2016 (2008)CrossRefGoogle Scholar
  41. 41.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)CrossRefGoogle Scholar
  42. 42.
    M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30(2), 139–326 (1981)CrossRefGoogle Scholar
  43. 43.
    P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)CrossRefGoogle Scholar
  44. 44.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)CrossRefGoogle Scholar
  45. 45.
    C. Valles, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, Alain Pénicaud, Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130(47), 15802–15804 (2008)CrossRefGoogle Scholar
  46. 46.
    Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51(36), 9052–9056 (2012)CrossRefGoogle Scholar
  47. 47.
    J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014)Google Scholar
  48. 48.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)CrossRefGoogle Scholar
  49. 49.
    Y. Jung, Y. Zhou, J.J. Cha, Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3(4), 452–463 (2016)CrossRefGoogle Scholar
  50. 50.
    J. Liu, H. Yang, S.G. Zhen, C.K. Poh, A. Chaurasia, J. Luo, X. Wu, E.K.L. Yeow, N.G. Sahoo, J. Lin, Z. Shen, A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv. 3(29), 11745–11750 (2013)CrossRefGoogle Scholar
  51. 51.
    Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo, The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23(37), 4684–4693 (2013)CrossRefGoogle Scholar
  52. 52.
    K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4), 3598–3606 (2013)CrossRefGoogle Scholar
  53. 53.
    K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)CrossRefGoogle Scholar
  54. 54.
    Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. 50(47), 11093–11097 (2011)CrossRefGoogle Scholar
  55. 55.
    C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011)CrossRefGoogle Scholar
  56. 56.
    N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)CrossRefGoogle Scholar
  57. 57.
    J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.-Y. Choi, J.M. Kim, J.-B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21(43), 4383–4387 (2009)CrossRefGoogle Scholar
  58. 58.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  59. 59.
    G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRefGoogle Scholar
  60. 60.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)CrossRefGoogle Scholar
  61. 61.
    G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRefGoogle Scholar
  62. 62.
    S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)CrossRefGoogle Scholar
  63. 63.
    K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277 (2010)CrossRefGoogle Scholar
  64. 64.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRefGoogle Scholar
  65. 65.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRefGoogle Scholar
  66. 66.
    A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110(45), 22328–22338 (2006)CrossRefGoogle Scholar
  67. 67.
    Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)CrossRefGoogle Scholar
  68. 68.
    S. Wang, P.K. Ang, Z. Wang, A.L.L. Tang, J.T.L. Thong, K.P. Loh, High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10(1), 92–98 (2010)CrossRefGoogle Scholar
  69. 69.
    L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRefGoogle Scholar
  70. 70.
    J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)CrossRefGoogle Scholar
  71. 71.
    J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24(21), 2874–2878 (2012)CrossRefGoogle Scholar
  72. 72.
    Y. Yang, Z. Liu, Z. Yin, Z. Du, L. Xie, M. Yi, J. Liu, W. Huang, Rod-coating all-solution fabrication of double functional graphene oxide films for flexible alternating current (AC)-driven light-emitting diodes. RSC Adv. 4(98), 55671–55676 (2014)CrossRefGoogle Scholar
  73. 73.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRefGoogle Scholar
  74. 74.
    J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express 20(14), 15474–15480 (2012)CrossRefGoogle Scholar
  75. 75.
    Y.J. Noh, H.-I. Joh, J. Yu, S.H. Hwang, S. Lee, C.H. Lee, S.Y. Kim, J.R. Youn, Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci. Rep. 5, 9141 (2015)Google Scholar
  76. 76.
    R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)CrossRefGoogle Scholar
  77. 77.
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011)CrossRefGoogle Scholar
  78. 78.
    S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRefGoogle Scholar
  79. 79.
    Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009)CrossRefGoogle Scholar
  80. 80.
    A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010)CrossRefGoogle Scholar
  81. 81.
    Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814 (2013)CrossRefGoogle Scholar
  82. 82.
    N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2), 887–894 (2010)CrossRefGoogle Scholar
  83. 83.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010)CrossRefGoogle Scholar
  84. 84.
    K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)CrossRefGoogle Scholar
  85. 85.
    L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017)CrossRefGoogle Scholar
  86. 86.
    F.J. Tölle, M. Fabritius, R. Mülhaupt, Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 22, 1136–1144 (2012)CrossRefGoogle Scholar
  87. 87.
    T. Hasan, V. Scardaci, P. Tan, A.G. Rozhin, W.I. Milne, A.C. Ferrari, Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-Methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111(34), 12594–12602 (2007)CrossRefGoogle Scholar
  88. 88.
    T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38), 3874–3899 (2009)CrossRefGoogle Scholar
  89. 89.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRefGoogle Scholar
  90. 90.
    J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRefGoogle Scholar
  91. 91.
    F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRefGoogle Scholar
  92. 92.
    J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRefGoogle Scholar
  93. 93.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011)CrossRefGoogle Scholar
  94. 94.
    D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q.M. Ramasse, N. McEvoy, W.J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D.D. O’Regan, G.S. Duesberg, V. Nicolosi, J.N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)Google Scholar
  95. 95.
    T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)CrossRefGoogle Scholar
  96. 96.
    S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)Google Scholar
  97. 97.
    R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)Google Scholar
  98. 98.
    Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRefGoogle Scholar
  99. 99.
    A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)CrossRefGoogle Scholar
  100. 100.
    J.M. Hughes, D. Aherne, J.N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. J. Appl. Polym. Sci. 127(6), 4483–4491 (2013)CrossRefGoogle Scholar
  101. 101.
    K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)CrossRefGoogle Scholar
  102. 102.
    E. Varrla, C. Backes, K.R. Paton, A. Harvey, Z. Gholamvand, J. McCauley, J.N. Coleman, Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 27(3), 1129–1139 (2015)CrossRefGoogle Scholar
  103. 103.
    E. Varrla, K.R. Paton, C. Backes, A. Harvey, R.J. Smith, J. McCauley, J.N. Coleman, Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6(20), 11810–11819 (2014)CrossRefGoogle Scholar
  104. 104.
    J. Shang, F. Xue, E. Ding, The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chem. Commun. 51(87), 15811–15814 (2015)CrossRefGoogle Scholar
  105. 105.
    F. Xue, E. Ding, J. Shang, Efficient exfoliation of molybdenum disulphide nanosheets by a high-pressure homogeniser. Micro Nano Lett. 10(10), 589–591 (2015)Google Scholar
  106. 106.
    T.J. Nacken, C. Damm, J. Walter, A. Rüger, W. Peukert, Delamination of graphite in a high pressure homogenizer. RSC Adv. 5(71), 57328–57338 (2015)CrossRefGoogle Scholar
  107. 107.
    P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRefGoogle Scholar
  108. 108.
    M.A. Ibrahem, T.-W. Lan, J.K. Huang, Y.-Y. Chen, K.-H. Wei, L.-J. Li, C.W. Chu. High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv. 3(32), 13193 (2013)CrossRefGoogle Scholar
  109. 109.
    W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20(28), 5817 (2010)CrossRefGoogle Scholar
  110. 110.
    Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon, C.-P. Wong, Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494 (2012)CrossRefGoogle Scholar
  111. 111.
    L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21(32), 11862 (2011)CrossRefGoogle Scholar
  112. 112.
    T.J. Mason, J.P. Lorimer, Applied Sonochemistry (Wiley-VCH, Weinheim, 2002)Google Scholar
  113. 113.
    S.Y. Tang, P. Shridharan, M. Sivakumar, Impact of process parameters in the generation of novel aspirin nanoemulsions - comparative studies between ultrasound cavitation and microfluidizer. Ultrason. Sonochem. 20(1), 485–497 (2013)CrossRefGoogle Scholar
  114. 114.
    A. Posch, 2D PAGE: Sample Preparation and Fractionation (Humana Press, Clifton, 2008)Google Scholar
  115. 115.
    T. Panagiotou, S.V. Mesite, J.M. Bernard, K.J. Chomistek, R.J. Fisher, Production of polymer nanosuspensions using microfluidizer processor based technologies, in NSTI-Nanotech 2008, vol. 1 (2008), pp. 688–691Google Scholar
  116. 116.
    T. Lajunen, K. Hisazumi, T. Kanazawa, H. Okada, Y. Seta, M. Yliperttula, A. Urtti, Y. Takashima, Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur. J. Pharm. Sci. 62, 23–32 (2014)CrossRefGoogle Scholar
  117. 117.
    S.M. Jafari, Y. He, B. Bhandari, Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82(4), 478–488 (2007)CrossRefGoogle Scholar
  118. 118.
    D. Lee, B. Lee, K.H. Park, H.J. Ryu, S. Jeon, S.H. Hong, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15(2), 1238–1244 (2015)CrossRefGoogle Scholar
  119. 119.
    T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi 247(11), 2953–2957 (2010)CrossRefGoogle Scholar
  120. 120.
    Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5), 3208–3213 (2010)CrossRefGoogle Scholar
  121. 121.
    C.M. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC Press, West Palm Beach, 2007)Google Scholar
  122. 122.
    A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRefGoogle Scholar
  123. 123.
    C.L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, 2nd edn. (Elsevier Science, New York , 2015)CrossRefGoogle Scholar
  124. 124.
    M. Yi, Z. Shen, S. Ma, X. Zhang, A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J. Nanoparticle Res. 14(8), 1003 (2012)Google Scholar
  125. 125.
    K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. 50(46), 10839–10842 (2011)CrossRefGoogle Scholar
  126. 126.
    R.C.T. Howe, F. Torrisi, F. Tomarchio, S. Mignuzzi, A.C. Ferrari, T. Hasan, Large-scale exfoliation of molybdenum disulphide in solvent mixtures, in ImagineNano (2013)Google Scholar
  127. 127.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRefGoogle Scholar
  128. 128.
    E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRefGoogle Scholar
  129. 129.
    D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRefGoogle Scholar
  130. 130.
    F. Bonaccorso, Z. Sun, Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express 4(1), 63–78 (2014)CrossRefGoogle Scholar
  131. 131.
    H.-J. Butt, K. Graff, M. Kappl, Physics and Chemistry of Interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013)Google Scholar
  132. 132.
    M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th edn. (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  133. 133.
    R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)CrossRefGoogle Scholar
  134. 134.
    R.C.T. Howe, R.I. Woodward, G. Hu, Z. Yang, E.J.R. Kelleher, T. Hasan, Surfactant-aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edge-state saturable absorption. Phys. Status Solidi 253(5), 911–917 (2016)CrossRefGoogle Scholar
  135. 135.
    P. Ramalingam, S.T. Pusuluri, S. Periasamy, R. Veerabahu, J. Kulandaivel, Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Adv. 3, 2369 (2013)CrossRefGoogle Scholar
  136. 136.
    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)CrossRefGoogle Scholar
  137. 137.
    M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)CrossRefGoogle Scholar
  138. 138.
    A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)CrossRefGoogle Scholar
  139. 139.
    M.S. Arnold, S.I. Stupp, M.C. Hersam, Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5(4), 713–718 (2005)CrossRefGoogle Scholar
  140. 140.
    G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017)CrossRefGoogle Scholar
  141. 141.
    U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27(15), 9077–9082 (2011)CrossRefGoogle Scholar
  142. 142.
    J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRefGoogle Scholar
  143. 143.
    A. Ciesielski, P. Samor, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRefGoogle Scholar
  144. 144.
    J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRefGoogle Scholar
  145. 145.
    R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A.E. Sichirollo, Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt. 28(12), 2318 (1989)CrossRefGoogle Scholar
  146. 146.
    L. Yang, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd edn. (Wiley, Hoboken, 2009)Google Scholar
  147. 147.
    C. Backes, R.J. Smith, N. McEvoy, N.C. Berner, D. McCloskey, H.C. Nerl, A. O’Neill, P.J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G.S. Duesberg, J.F. Donegan, V. Nicolosi, J.N. Coleman, Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat. Commun. 5, 4576 (2014)CrossRefGoogle Scholar
  148. 148.
    K.S. Aneja, S. Bohm, A.S. Khanna, H.L. Mallika Bohm, Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 7(42), 17879–17888 (2015)CrossRefGoogle Scholar
  149. 149.
    R. Erni, M.D. Rossell, C. Kisielowski, Ulrich Dahmen, Atomic-resolution imaging with a Sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)Google Scholar
  150. 150.
    N. Wang, Q. Xu, S. Xu, Y. Qi, M. Chen, H. Li, High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Sci. Rep. 5, 16764 (2015)CrossRefGoogle Scholar
  151. 151.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)***CrossRefGoogle Scholar
  152. 152.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1–2), 101–109 (2007)CrossRefGoogle Scholar
  153. 153.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)CrossRefGoogle Scholar
  154. 154.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)Google Scholar
  155. 155.
    S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.-W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014)CrossRefGoogle Scholar
  156. 156.
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)CrossRefGoogle Scholar
  157. 157.
    C. Backes, K.R. Paton, D. Hanlon, S. Yuan, M.I. Katsnelson, J. Houston, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8(7), 4311–4323 (2016)CrossRefGoogle Scholar
  158. 158.
    A.C Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)CrossRefGoogle Scholar
  159. 159.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRefGoogle Scholar
  160. 160.
    X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44(9), 2757–2785 (2015)CrossRefGoogle Scholar
  161. 161.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010)CrossRefGoogle Scholar
  162. 162.
    Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)CrossRefGoogle Scholar
  163. 163.
    L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)CrossRefGoogle Scholar
  164. 164.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)CrossRefGoogle Scholar
  165. 165.
    B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 85(16), 161403(r) (2012)Google Scholar
  166. 166.
    Y. Liu, Z. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8(1), 335 (2013)CrossRefGoogle Scholar
  167. 167.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)CrossRefGoogle Scholar
  168. 168.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)Google Scholar
  169. 169.
    X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, P.-H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 27(19), 1604468 (2017)CrossRefGoogle Scholar
  170. 170.
    F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S.J. Jung, F. Bonaccorso, P.J. Paul, D.P. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  171. 171.
    C. Casiraghi, Raman spectroscopy of graphene edges. Nano Lett. 9(4), 1433–1441 (2009)CrossRefGoogle Scholar
  172. 172.
    U. Khan, A. O’Neill, H. Porwal, P. May, K. Nawaz, J.N. Coleman, Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50(2), 470–475 (2012)CrossRefGoogle Scholar
  173. 173.
    W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 5(20), 9677–9683 (2013)CrossRefGoogle Scholar
  174. 174.
    X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 87(11), 115413 (2013)Google Scholar
  175. 175.
    M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)CrossRefGoogle Scholar
  176. 176.
    L. Liang, V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6(10), 5394–5401 (2014)CrossRefGoogle Scholar
  177. 177.
    D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun, Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep. 5, 15899 (2015)CrossRefGoogle Scholar
  178. 178.
    A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)CrossRefGoogle Scholar
  179. 179.
    X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)CrossRefGoogle Scholar
  180. 180.
    H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photon. 4(12), 3023–3030 (2017)CrossRefGoogle Scholar
  181. 181.
    R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7(4), 465–468 (2011)CrossRefGoogle Scholar
  182. 182.
    M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010)CrossRefGoogle Scholar
  183. 183.
    S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)CrossRefGoogle Scholar
  184. 184.
    S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). J. Graphene 6(1), 73348 (2017)Google Scholar
  185. 185.
    A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)CrossRefGoogle Scholar
  186. 186.
    S. Yumitori, Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 35(1), 139–146 (2000)CrossRefGoogle Scholar
  187. 187.
    K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)CrossRefGoogle Scholar
  188. 188.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010)CrossRefGoogle Scholar
  189. 189.
    T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)CrossRefGoogle Scholar
  190. 190.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)zbMATHGoogle Scholar
  191. 191.
    F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leonard W. T. Ng
    • 1
  • Guohua Hu
    • 1
  • Richard C. T. Howe
    • 1
  • Xiaoxi Zhu
    • 1
  • Zongyin Yang
    • 1
  • Christopher G. Jones
    • 2
  • Tawfique Hasan
    • 1
  1. 1.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK
  2. 2.Novalia Ltd.CambridgeUK

Personalised recommendations