Advertisement

Structures, Properties and Applications of 2D Materials

  • Leonard W. T. Ng
  • Guohua Hu
  • Richard C. T. Howe
  • Xiaoxi Zhu
  • Zongyin Yang
  • Christopher G. Jones
  • Tawfique Hasan
Chapter

Abstract

Early scientific investigations into graphene date back to the 1950s. The interest in graphene intensified when Konstantin Novosolev and Andre Geim were awarded the Nobel prize in physics for ‘groundbreaking experiments regarding the two-dimensional material graphene’. Since then, other two-dimensional (2D) materials have (re)gained increasing research interest. The most studied 2D materials to date include transition metal dichalcogenides (TMDs), black phosphorus (BP), hexagonal boron nitride (h-BN) and transition metal carbides and/or carbonitrides (MXenes). This chapter introduces these key material groups, and provides a review of the current understanding of their structures and properties. In particular, this chapter will focus on the (opto)electronic properties of the individual 2D materials and their potential applications.

References

  1. 1.
    M. Garašanin, The Eneolithic period in the Central Balkan Area, in The Cambridge Ancient History, ed. by J. Boardman, I.E.S. Edwards, N.G.L. Hammond, E. Sollberger (Cambridge University Press, Cambridge, 1982), pp. 136–162Google Scholar
  2. 2.
    R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011)CrossRefGoogle Scholar
  3. 3.
    B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)CrossRefGoogle Scholar
  4. 4.
    H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Dunnste Kohlenstoff-Folien. Z. fur Naturforsch. Sect. B J. Chem. Sci. 17(3), 150–153 (1962)Google Scholar
  5. 5.
    A.K. Bodenmann, A.H. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Ruess, F. Vogt, Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd. Monatsh. Chem. 78(3-4), 222–242 (1948)Google Scholar
  7. 7.
    S. Mouras, A. Hamm, D. Djurado, J.-C. Cousseing, Synthesis of first stage graphite intercalation compounds with fluorides. Rev. Chim. minér. 24(5), 572–582 (1987)Google Scholar
  8. 8.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRefGoogle Scholar
  9. 9.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Lipp, K.A. Schwetz, K. Hunold, Hexagonal boron nitride: fabrication, properties and applications. J. Eur. Ceram. Soc. 5(1), 3–9 (1989)CrossRefGoogle Scholar
  13. 13.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRefGoogle Scholar
  15. 15.
    R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A Math. Phys. Eng. Sci. 273(1352), 69–83 (1963)CrossRefGoogle Scholar
  16. 16.
    P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)CrossRefGoogle Scholar
  17. 17.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRefGoogle Scholar
  18. 18.
    P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914)CrossRefGoogle Scholar
  19. 19.
    B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014)Google Scholar
  21. 21.
    F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRefGoogle Scholar
  22. 22.
    A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015)CrossRefGoogle Scholar
  24. 24.
    R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)Google Scholar
  25. 25.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  26. 26.
    A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRefGoogle Scholar
  27. 27.
    A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRefGoogle Scholar
  28. 28.
    R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 13(4), 1416–1421 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007)CrossRefGoogle Scholar
  32. 32.
    F. Hui, C. Pan, Y. Shi, Y. Ji, E. Grustan-Gutierrez, M. Lanza, On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 163, 119–133 (2016)CrossRefGoogle Scholar
  33. 33.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRefGoogle Scholar
  34. 34.
    J. Ye, M.F Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A.F. Morpurgo, Y. Iwasa, Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. 108(32), 13002–13006 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang, D. Englund, H.J. Gao, P. Sutter, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11), 10612–10620 (2015)CrossRefGoogle Scholar
  36. 36.
    A.F. Morpurgo, The ABC of 2D materials. Nat. Phys. 11(2), 99–100 (2015)CrossRefGoogle Scholar
  37. 37.
    Y.-J. Kim, Y. Kim, K. Novoselov, B.H. Hong, Engineering electrical properties of graphene: chemical approaches. 2D Mater. 2(4), 042001 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008)CrossRefGoogle Scholar
  39. 39.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)CrossRefGoogle Scholar
  40. 40.
    Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRefGoogle Scholar
  41. 41.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRefGoogle Scholar
  42. 42.
    F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRefGoogle Scholar
  43. 43.
    L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)CrossRefGoogle Scholar
  44. 44.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  45. 45.
    L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)CrossRefGoogle Scholar
  46. 46.
    X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012)CrossRefGoogle Scholar
  47. 47.
    S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5), 2713–2720 (2010)CrossRefGoogle Scholar
  48. 48.
    M.F. Craciun, T.H. Bointon, S. Russo, Is graphene a good transparent electrode for photovoltaics and display applications? IET Circuits Devices Syst. 9(6), 403–412 (2015)Google Scholar
  49. 49.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRefGoogle Scholar
  50. 50.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRefGoogle Scholar
  51. 51.
    S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6(3), 458–464 (2010)CrossRefGoogle Scholar
  52. 52.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)CrossRefGoogle Scholar
  53. 53.
    J. Shim, J.M. Yun, T. Yun, P. Kim, K.E. Lee, W.J. Lee, R. Ryoo, D.J. Pine, G.-R. Yi, S.O. Kim, Two-minute assembly of pristine large-area graphene based films. Nano Lett. 14(3), 1388–1393 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRefGoogle Scholar
  55. 55.
    D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)CrossRefGoogle Scholar
  56. 56.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29, 2332–2340 (2017)CrossRefGoogle Scholar
  57. 57.
    E.B. Secor, M.C. Hersam, Graphene inks for printed electronics, http://www.sigmaaldrich.com/technical-documents/articles/technology-spotlights/graphene-inks-for-printed-electronics.html. Accessed 24 May 2015
  58. 58.
    New graphene based inks for high-speed manufacturing of printed electronics, University of Cambridge, http://www.cam.ac.uk/research/news/new-graphene-based-inks-for-high-speed-manufacturing-of-printed-electronics
  59. 59.
    P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)CrossRefGoogle Scholar
  60. 60.
    Y. Liu, Z. Xu, J. Zhan, P. Li, C. Gao, Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 28(36), 7941–7947 (2016)CrossRefGoogle Scholar
  61. 61.
    A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507–514 (2001)CrossRefGoogle Scholar
  62. 62.
    F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRefGoogle Scholar
  63. 63.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRefGoogle Scholar
  64. 64.
    P. Martin, Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 9(4), 211–223 (2009)Google Scholar
  65. 65.
    S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012)CrossRefGoogle Scholar
  66. 66.
    W. Yuan, G. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078 (2013)CrossRefGoogle Scholar
  67. 67.
    K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C. Gao, Y.-S. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo, X. Duan, Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262 (2017)Google Scholar
  68. 68.
    Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010)CrossRefGoogle Scholar
  69. 69.
    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRefGoogle Scholar
  70. 70.
    G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRefGoogle Scholar
  71. 71.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRefGoogle Scholar
  72. 72.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRefGoogle Scholar
  73. 73.
    T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260), 530–533 (2015)CrossRefGoogle Scholar
  74. 74.
    Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau, H. Huang, Y. Chai, Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2(24), 9142–9149 (2014)CrossRefGoogle Scholar
  75. 75.
    J. Cao, Y. Wang, Y. Zhou, J.-H. Ouyang, D. Jia, L. Guo, High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J. Electroanal. Chem. 689, 201–206 (2013)CrossRefGoogle Scholar
  76. 76.
    L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRefGoogle Scholar
  77. 77.
    T. Ramanathan, A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)CrossRefGoogle Scholar
  78. 78.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRefGoogle Scholar
  79. 79.
    S.H. Song K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013)CrossRefGoogle Scholar
  80. 80.
    A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet - epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)CrossRefGoogle Scholar
  81. 81.
    P. Dollfus, V.H. Nguyen, Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Matter 27, 133204 (2015)Google Scholar
  82. 82.
    T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible graphene thermoelectrics. Adv. Funct. Mater. 28(22), 1800480 (2018)CrossRefGoogle Scholar
  83. 83.
    J. Saint-Martin, V.H. Nguyen, P. Dollfus, M.C. Nguyen, High thermoelectric figure of merit in devices made of vertically stacked graphene layers, in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 169–172Google Scholar
  84. 84.
    M. Breusing, C. Ropers, T. Elsaesser, Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102(8), 086809 (2009)Google Scholar
  85. 85.
    D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101(15), 157402 (2008)Google Scholar
  86. 86.
    K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42(5), 2842–2851 (1990)CrossRefGoogle Scholar
  87. 87.
    T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)CrossRefGoogle Scholar
  88. 88.
    T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38–39), 3874–3899 (2009)Google Scholar
  89. 89.
    R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335(6067), 442–444 (2012)CrossRefGoogle Scholar
  90. 90.
    R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172), 752–754 (2014)CrossRefGoogle Scholar
  91. 91.
    J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRefGoogle Scholar
  92. 92.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRefGoogle Scholar
  93. 93.
    M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)CrossRefGoogle Scholar
  94. 94.
    E.A. Marseglia, Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 3(2), 177–216 (1983)CrossRefGoogle Scholar
  95. 95.
    K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)CrossRefGoogle Scholar
  96. 96.
    X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B.K. Tay, P.M. Ajayan, Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8(5), 5125–5131 (2014)CrossRefGoogle Scholar
  97. 97.
    M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R.M. Wallace, S.-C. Lee, J.-H. He, J.W. Ager III, X. Zhang, E. Yablonovitch, A. Javey, Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015)CrossRefGoogle Scholar
  98. 98.
    S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)CrossRefGoogle Scholar
  99. 99.
    A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides - efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577 (2012)CrossRefGoogle Scholar
  100. 100.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)Google Scholar
  101. 101.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)CrossRefGoogle Scholar
  102. 102.
    A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011)Google Scholar
  103. 103.
    Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9(2), 111–115 (2013)CrossRefGoogle Scholar
  104. 104.
    W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85(3), 033305 (2012)Google Scholar
  105. 105.
    X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015)CrossRefGoogle Scholar
  106. 106.
    K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86(4), 463–467 (1982)CrossRefGoogle Scholar
  107. 107.
    S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12(11), 5576–5580 (2012)CrossRefGoogle Scholar
  108. 108.
    C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231–6236 (2014)CrossRefGoogle Scholar
  109. 109.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013)Google Scholar
  110. 110.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)CrossRefGoogle Scholar
  111. 111.
    D. Kufer, G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15(11), 7307–7313 (2015)CrossRefGoogle Scholar
  112. 112.
    N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, M. Terrones, Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511–5517 (2013)CrossRefGoogle Scholar
  113. 113.
    Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, Q. Bao, Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10(1), 573–580 (2016)Google Scholar
  114. 114.
    C. Palacios-Berraquero, M. Barbone, D.M. Kara, X. Chen, I. Goykhman, D. Yoon, A.K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A.C. Ferrari, M. Atatüre, Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016)CrossRefGoogle Scholar
  115. 115.
    F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14(3), 301–306 (2015)CrossRefGoogle Scholar
  116. 116.
    S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, A.F. Morpurgo, Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14(4), 2019–2025 (2014)CrossRefGoogle Scholar
  117. 117.
    M. Shanmugam, T. Bansal, C.A. Durcan, B. Yu, Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100(15), 153901 (2012)CrossRefGoogle Scholar
  118. 118.
    A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)CrossRefGoogle Scholar
  119. 119.
    M.S. Fuhrer, J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 146–147 (2013)CrossRefGoogle Scholar
  120. 120.
    K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.-J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)CrossRefGoogle Scholar
  121. 121.
    T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2012)CrossRefGoogle Scholar
  122. 122.
    B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12(9), 815–820 (2013)CrossRefGoogle Scholar
  123. 123.
    M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)CrossRefGoogle Scholar
  124. 124.
    R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051 (2015)CrossRefGoogle Scholar
  125. 125.
    S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017)CrossRefGoogle Scholar
  126. 126.
  127. 127.
    K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J.N. Coleman, L. Zhang, W.J. Blau, Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10), 9260–9267 (2013)CrossRefGoogle Scholar
  128. 128.
    K. Wu, X. Zhang, J. Wang, X. Li, J. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 23(9), 11453 (2015)CrossRefGoogle Scholar
  129. 129.
    Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10(4), 227–238 (2016)CrossRefGoogle Scholar
  130. 130.
    L.A.B. Marçal, M.S.C. Mazzoni, L.N. Coelho, E. Marega, G.J. Salamo, R. Magalhães-Paniago, A. Malachias, Quantitative measurement of manganese incorporation into (In,Mn)As islands by resonant x-ray scattering. Phys. Rev. B 96(24), 245301 (2017)Google Scholar
  131. 131.
    R.I. Woodward, E.J.R. Kelleher, R.C.T. Howe, G. Hu, F. Torrisi, T. Hasan, S.V. Popov, J.R. Taylor, Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express 22(25), 31113 (2014)CrossRefGoogle Scholar
  132. 132.
    M. Zhang, G. Hu, G. Hu, R.C.T. Howe, L. Chen, Z. Zheng, T. Hasan, Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 5, 17482 (2015)Google Scholar
  133. 133.
    R.I. Woodward, R.C.T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, E.J.R. Kelleher, Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Res. 3, A30–A42 (2015)Google Scholar
  134. 134.
    S. Liu, N. Huo, S. Gan, Y. Li, Z. Wei, B. Huang, J. Liu, J. Li, H. Chen, Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3(42), 10974–10980 (2015)CrossRefGoogle Scholar
  135. 135.
    L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)CrossRefGoogle Scholar
  136. 136.
    X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523–4530 (2015)CrossRefGoogle Scholar
  137. 137.
    A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015)Google Scholar
  138. 138.
    R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014)CrossRefGoogle Scholar
  139. 139.
    Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014)CrossRefGoogle Scholar
  140. 140.
    X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)CrossRefGoogle Scholar
  141. 141.
    H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics 4, 3023–3030 (2017)CrossRefGoogle Scholar
  142. 142.
    J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24(41), 6524–6531 (2014)CrossRefGoogle Scholar
  143. 143.
    H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)CrossRefGoogle Scholar
  144. 144.
    J. Kang, J. Wood, S. Wells, J.-H. Lee, X. Liu, K.-S. Chen, M. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9(4), 3596–3604 (2015)CrossRefGoogle Scholar
  145. 145.
    M. Engel, M. Steiner, P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14(11), 6414–6417 (2014)CrossRefGoogle Scholar
  146. 146.
    G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017)Google Scholar
  147. 147.
    M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014)Google Scholar
  148. 148.
    D. Hanlon, C. Backes, E. Doherty, C. Cucinotta, N. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. Ramasse, N. McEvoy, W. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. O’Regan, G.S. Duesberg, V. Nicolosi, J. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)Google Scholar
  149. 149.
    Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan, Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express 23(10), 12823 (2015)CrossRefGoogle Scholar
  150. 150.
    J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K.M. Abramski, Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett. 107(5), 051108 (2015)CrossRefGoogle Scholar
  151. 151.
    H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li, Y. Chen, H. Zhang, H. Bao, S.P. Lau, C. Pan, D. Fan, Q. Bao, Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 10, 1446 (2015)Google Scholar
  152. 152.
    D. Li, R. Cheng, H. Zhou, C. Wang, A. Yin, Y. Chen, N.O. Weiss, Y. Huang, X. Duan, Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 6, 7509 (2015)Google Scholar
  153. 153.
    Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)CrossRefGoogle Scholar
  154. 154.
    S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRefGoogle Scholar
  155. 155.
    J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014)CrossRefGoogle Scholar
  156. 156.
    A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)CrossRefGoogle Scholar
  157. 157.
    A. Favron, E. Gaufres, F. Fossard, A.-L. Phaneuf-L’Heureux, N.Y.-W. Tang, P.L. Levesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14(8), 826–832 (2015)CrossRefGoogle Scholar
  158. 158.
    J.O. Island, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002 (2015)CrossRefGoogle Scholar
  159. 159.
    S.-Z. Huang, J. Jin, Y. Cai, Y. Li, Z. Deng, J.-Y. Zeng, J. Liu, C. Wang, T. Hasan, B.-L. Su, Three-dimensional (3D) bicontinuous hierarchically porous Mn2O3 single crystals for high performance lithium-ion batteries. Sci. Rep. 5, 14686 (2015)Google Scholar
  160. 160.
    X.-F. Jiang, Q. Weng, X.-B. Wang, X. Li, J. Zhang, D. Golberg, Y. Bando, Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J. Mater. Sci. Technol. 31(6), 589–598 (2015)CrossRefGoogle Scholar
  161. 161.
    P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537 (2014)CrossRefGoogle Scholar
  162. 162.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRefGoogle Scholar
  163. 163.
    Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L.-Q. Chen, T. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)CrossRefGoogle Scholar
  164. 164.
    L. Liu, Y.P. Feng, Z.X. Shen, Structural and electronic properties of h-BN. Phys. Rev. B 68(10), 104102 (2003)Google Scholar
  165. 165.
    I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013)CrossRefGoogle Scholar
  166. 166.
    H. Liem, H.S. Choy, Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun. 163, 41–45 (2013)CrossRefGoogle Scholar
  167. 167.
    K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)CrossRefGoogle Scholar
  168. 168.
    A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem. Soc. Rev. 43(3), 934–959 (2014)CrossRefGoogle Scholar
  169. 169.
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)CrossRefGoogle Scholar
  170. 170.
    I. Meric, C. Dean, A. Young, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron nitride gate dielectrics, in 2010 International Electron Devices Meeting (IEEE, New York, 2010), pp. 2321–2324Google Scholar
  171. 171.
    I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron-nitride dielectrics. Proc. IEEE 101(7), 1609–1619 (2013)CrossRefGoogle Scholar
  172. 172.
    L.H. Li, E.J.G. Santos, T. Xing, E. Cappelluti, R. Roldán, Y. Chen, K. Watanabe, T. Taniguchi, Dielectric screening in atomically thin boron bitride nanosheets. Nano Lett. 15(1), 218–223 (2015)CrossRefGoogle Scholar
  173. 173.
    F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRefGoogle Scholar
  174. 174.
    X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, Y. Bando, Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett. 7(1), 662 (2012)CrossRefGoogle Scholar
  175. 175.
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)CrossRefGoogle Scholar
  176. 176.
    Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014)CrossRefGoogle Scholar
  177. 177.
    M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23(17), 2185–2192 (2013)CrossRefGoogle Scholar
  178. 178.
    Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2 X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916(2012)Google Scholar
  179. 179.
    Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)CrossRefGoogle Scholar
  180. 180.
    D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014)Google Scholar
  181. 181.
    D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014)CrossRefGoogle Scholar
  182. 182.
    X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015)Google Scholar
  183. 183.
    Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)CrossRefGoogle Scholar
  184. 184.
    R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015)CrossRefGoogle Scholar
  185. 185.
    B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28(17), 3333–3339 (2016)CrossRefGoogle Scholar
  186. 186.
    F. Wang, C. Yang, C. Duan, D. Xiao, Y. Tang, J. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J. Electrochem. Soc. 162(1), B16–B21 (2014)CrossRefGoogle Scholar
  187. 187.
    J. Xu, J. Shim, J.-H. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26(29), 5328–5334 (2016)Google Scholar
  188. 188.
    Z. Ma, Z. Hu, X. Zhao, Q. Tang, D. Wu, Z. Zhou, L. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 118(10), 5593–5599 (2014)CrossRefGoogle Scholar
  189. 189.
    Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5(4), 978–984 (2017)CrossRefGoogle Scholar
  190. 190.
    F. Annabi-Bergaya, Layered clay minerals. Basic research and innovative composite applications. Microporous Mesoporous Mater. 107(1–2), 141–148 (2008)CrossRefGoogle Scholar
  191. 191.
    B. Chen, J.R.G. Evans, H.C. Greenwell, P. Boulet, P.V. Coveney, A.A. Bowden, A. Whiting, A critical appraisal of polymer clay nanocomposites. Chem. Soc. Rev. 37(3), 568–594 (2008)CrossRefGoogle Scholar
  192. 192.
    T.P. Dolley, 2008 Minerals Yearbook: Mica (National Minerals Information Center, Reston, 2008)Google Scholar
  193. 193.
    W.-G. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908–924 (2013)CrossRefGoogle Scholar
  194. 194.
    A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)CrossRefGoogle Scholar
  195. 195.
    C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+C 99(1–4), 81–85 (1980)CrossRefGoogle Scholar
  196. 196.
    R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22(45), 5082–5104 (2010)CrossRefGoogle Scholar
  197. 197.
    M. Osada, T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19(17), 2503 (2009)CrossRefGoogle Scholar
  198. 198.
    A.R. Pray, R.F. Heitmiller, S. Strycker, V.D. Aftandilian, T. Muniyappan, D. Choudhury, M. Tamres, Anhydrous metal chlorides, in Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, ed. by R.J. Angelici (Wiley, New York, 1990), pp. 321–323Google Scholar
  199. 199.
    N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1997)Google Scholar
  200. 200.
    E. Carroll, D. Buckley, N.V.V. Mogili, D. McNulty, M.S. Moreno, C. Glynn, G. Collins, J.D. Holmes, K.M. Razeeb, C. O’Dwyer. 2D nanosheet paint from solvent-exfoliated Bi2Te3 ink. Chem. Mater. 29, 7390–7400 (2017)CrossRefGoogle Scholar
  201. 201.
    W. Zheng, T. Xie, Y. Zhou, Y.L. Chen, W. Jiang, S. Zhao, J. Wu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H.Q. Xu, Z. Liu, H. Peng, Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 6, 6972 (2015)CrossRefGoogle Scholar
  202. 202.
    V.D. Das, N. Soundararajan, Thermoelectric power and electrical resistivity of crystalline antimony telluride (Sb2Te3) thin films: temperature and size effects. J. Appl. Phys. 65, 2332–2341 (1989)CrossRefGoogle Scholar
  203. 203.
    S.K. Mishra, S. Satpathy, O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–470 (1997)CrossRefGoogle Scholar
  204. 204.
    R.B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C.A. Durcan, M.T. Murphy, T.M. Murray, R.J. Matyi, R.L. Moore, B. Yu, Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014)CrossRefGoogle Scholar
  205. 205.
    D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patanè, L. Eaves, I.V. Grigorieva, V.I. Fal’ko, A.K. Geim, Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017)CrossRefGoogle Scholar
  206. 206.
    S. Ghosh, P.D. Patil, M. Wasala, S. Lei, A. Nolander, P. Sivakumar, R. Vajtai, P. Ajayan, S. Talapatra, Fast photoresponse and high detectivity in copper indium selenide (CuIn7Se11) phototransistors. 2D Mater. 5, 015001 (2017)CrossRefGoogle Scholar
  207. 207.
    J.O. Island, S.I. Blanter, M. Buscema, H.S.J. van der Zant, A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 15, 7853–7858 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leonard W. T. Ng
    • 1
  • Guohua Hu
    • 1
  • Richard C. T. Howe
    • 1
  • Xiaoxi Zhu
    • 1
  • Zongyin Yang
    • 1
  • Christopher G. Jones
    • 2
  • Tawfique Hasan
    • 1
  1. 1.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK
  2. 2.Novalia Ltd.CambridgeUK

Personalised recommendations