• Leonard W. T. Ng
  • Guohua Hu
  • Richard C. T. Howe
  • Xiaoxi Zhu
  • Zongyin Yang
  • Christopher G. Jones
  • Tawfique Hasan


Graphene and related two-dimensional (2D) materials have attracted considerable research interest across a wide range of application fields due to their unique characteristics. However, significant barriers still remain in the large-scale and low-cost fabrication of devices based on these materials. A widely explored route to accomplishing this is in the formulation of 2D material functional inks for use with existing printing technologies that have been traditionally used for graphics printing. In this chapter, we provide an introduction to the key topics that will be introduced later in the book and give an overview of the current and future economic and technological landscape of 2D materials and their potential applications in the context of printing.


  1. 1.
    A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J.-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRefGoogle Scholar
  2. 2.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRefGoogle Scholar
  3. 3.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRefGoogle Scholar
  6. 6.
    A.A. Tracton (ed.), Coatings Technology Handbook (CRC Press, Boca Raton, 2005)Google Scholar
  7. 7.
    R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)Google Scholar
  8. 8.
    F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)CrossRefGoogle Scholar
  9. 9.
    M.A.M. Leenen, V. Arning, H. Thiem, J. Steiger, R. Anselmann, Printable electronics: flexibility for the future. Phys. Status Solidi 206(4), 588–597 (2009)CrossRefGoogle Scholar
  10. 10.
    Technavio, Global printing inks market 2016–2020. Technical report, Infiniti Research Limited (2017)Google Scholar
  11. 11.
    Z. Cui, Printed Electronics: Materials, Technologies and Applications (Wiley, Hoboken, 2016)CrossRefGoogle Scholar
  12. 12.
    A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110(1), 3–24 (2010)CrossRefGoogle Scholar
  13. 13.
    G. Grau, J. Cen, H. Kang, R. Kitsomboonloha, W.J. Scheideler, V. Subramanian, Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flex. Print. Electron. 1(2), 023002 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Fukuda, T. Someya, Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 29, 1602736 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Miettinen, V. Pekkanen, K. Kaija, P. Mansikkamäki, J. Mäntysalo, M. Mäntysalo, J. Niittynen, J. Pekkanen, T. Saviauk, R. Rönkkä, Inkjet printed System-in-Package design and manufacturing. Microelectron. J. 39(12), 1740–1750 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Park, H. Kang, Y. Lee, Y. Park, J. Noh, G. Cho, Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz. Nanotechnology 23(34), 344006 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Vena, E. Perret, S. Tedjini, G.E.P. Tourtollet, A. Delattre, F. Garet, Y. Boutant, Design of chipless RFID tags printed on paper by flexography. IEEE Trans. Antennas Propag. 61(12), 5868–5877 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Spree, Introduction to organic and printed electronics. Technical report, Holst Centre (2012)Google Scholar
  19. 19.
    Markets and Markets, Functional printing market by materials (substrate, inks), technology (inkjet, screen, flexo, gravure), application (sensors, displays, batteries, RFID, lighting, PV, medical), and geography (North America, Europe, APAC, ROW) - global forecasts and analysis. Technical report, Markets and Markets (2013)Google Scholar
  20. 20.
    Z.W. Wicks Jr., F.N. Jones, S.P. Pappas, D.A. Wicks, Organic Coatings: Science and Technology, vol. 5 (Wiley, Hoboken, 1985)Google Scholar
  21. 21.
    N. Rehfeld, V. Stenzel, Functional Coatings. European Coating Tech Files (Vincentz Network, Hanover, 2011)Google Scholar
  22. 22.
    U. Riaz, C. Nwaoha, S.M. Ashraf, Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers. Prog. Org. Coat. 77(4), 743–756 (2014)CrossRefGoogle Scholar
  23. 23.
    I.P. Parkin, R.G. Palgrave, Self-cleaning coatings. J. Mater. Chem. 15(17), 1689–1695 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Kuhr, S. Bauer, U. Rothhaar, D. Wolff, Coatings on plastics with the PICVD technology. Thin Solid Films 442(1–2), 107–116 (2003)CrossRefGoogle Scholar
  25. 25.
    L.D. Chambers, K.R. Stokes, F.C. Walsh, R.J.K. Wood, Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 201(6), 3642–3652 (2006)Google Scholar
  26. 26.
    A. Mathiazhagan, R. Joseph, Nanotechnology-a new prospective in organic coating. Int. J. Chem. Eng. Appl. 2(4), 228–237 (2011)Google Scholar
  27. 27.
    J.C. Tiller, C.J. Liao, K. Lewis, A.M. Klibanov, Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. U.S.A. 98(11), 5981–5985 (2001)CrossRefGoogle Scholar
  28. 28.
    M.F. Montemor, Functional and smart coatings for corrosion protection: a review of recent advances. Surf. Coat. Technol. 258, 17–37 (2014)CrossRefGoogle Scholar
  29. 29.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRefGoogle Scholar
  30. 30.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  31. 31.
    F. Annabi-Bergaya, Layered clay minerals. Basic research and innovative composite applications. Microporous Mesoporous Mater. 107(1), 141–148 (2008)CrossRefGoogle Scholar
  32. 32.
    W.G. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908–924 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Yaya, B. Agyei-Tuffour, D. Dodoo-Arhin, E. Nyankson, E. Annan, D.S. Konadu, E. Sinayobye, E.A. Baryeh, C.P. Ewels, Layered nanomaterials-a review. Glob. J. Eng. Des. Technol. 1(2), 32–41 (2012)Google Scholar
  34. 34.
    P. Wallace, The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)CrossRefGoogle Scholar
  35. 35.
    J.W. McClure, Diamagnetism of graphite. Phys. Rev. 104(3), 666–671 (1956)CrossRefGoogle Scholar
  36. 36.
    J. Slonczewski, P. Weiss, Band structure of graphite. Phys. Rev. 109(2), 272–279 (1958)CrossRefGoogle Scholar
  37. 37.
    X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999)CrossRefGoogle Scholar
  38. 38.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  39. 39.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)CrossRefGoogle Scholar
  40. 40.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)CrossRefGoogle Scholar
  42. 42.
    T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible graphene thermoelectrics. Adv. Funct. Mater. 28(22), 1800480 (2018)CrossRefGoogle Scholar
  43. 43.
    F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8(12), 899–907 (2014)CrossRefGoogle Scholar
  44. 44.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRefGoogle Scholar
  45. 45.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRefGoogle Scholar
  46. 46.
    B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014)Google Scholar
  48. 48.
    A. Nathan, A. Ahnood, M.T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A.J. Flewitt, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A.J. Amaratunga, W.I. Milne, Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486–1517 (2012)CrossRefGoogle Scholar
  49. 49.
    F.J. Garcia de Abajo, Graphene nanophotonics. Science 339(6122), 917–918 (2013)CrossRefGoogle Scholar
  50. 50.
    T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi 247(11), 2953–2957 (2010)CrossRefGoogle Scholar
  51. 51.
    Y. Sun, G. Shi, Graphene/polymer composites for energy applications. J. Polym. Sci. Part B Polym. Phys. 51(4), 231–253 (2013)CrossRefGoogle Scholar
  52. 52.
    H.-J. Choi, S.-M. Jung, J.-M. Seo, D.W. Chang, L. Dai, J.-B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4), 534–551 (2012)CrossRefGoogle Scholar
  53. 53.
    J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRefGoogle Scholar
  54. 54.
    Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, K. Liao, Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24(25), 3426–3431 (2012)CrossRefGoogle Scholar
  55. 55.
    Y. Lu, B.R. Goldsmith, N.J. Kybert, A.T.C. Johnson, DNA-decorated graphene chemical sensors. Appl. Phys. Lett. 97(8), 083107 (2010)CrossRefGoogle Scholar
  56. 56.
    D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017)CrossRefGoogle Scholar
  57. 57.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRefGoogle Scholar
  58. 58.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRefGoogle Scholar
  59. 59.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRefGoogle Scholar
  60. 60.
    K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012)CrossRefGoogle Scholar
  61. 61.
    Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13(4), 1852–1857 (2013)CrossRefGoogle Scholar
  62. 62.
    J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)CrossRefGoogle Scholar
  63. 63.
    J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)CrossRefGoogle Scholar
  64. 64.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRefGoogle Scholar
  65. 65.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  66. 66.
    F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRefGoogle Scholar
  67. 67.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRefGoogle Scholar
  68. 68.
    B.Z. Jang, W.C. Huang, US 7,071,258 B1 Nano-scaled graphene plates. Technical report 12 (2002)Google Scholar
  69. 69.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRefGoogle Scholar
  70. 70.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  71. 71.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29(5), 2332–2340 (2017)CrossRefGoogle Scholar
  72. 72.
    G. Hu, R.C.T. Howe, Z. Yang, L.W.T. Ng, C.G. Jones, K.J. Stone, T. Hasan, WO2017013263A1 Nanoplatelet dispersions, methods for their production and uses thereof (2017)Google Scholar
  73. 73.
    J. Jo, J.-S. Yu, T.-M. Lee, D.-S. Kim, Fabrication of printed organic thin-film transistors using roll printing. Jpn. J. Appl. Phys. 48(4), 04C181 (2009)CrossRefGoogle Scholar
  74. 74.
    M. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A.D. Leonard, J.M. Tour, G. Cho, All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57(3), 571–580 (2010)CrossRefGoogle Scholar
  75. 75.
    M. Allen, C. Lee, B. Ahn, T. Kololuoma, K. Shin, S. Ko, Microelectronic engineering R2R gravure and inkjet printed RF resonant tag. Microelectron. Eng. 88(11), 3293–3299 (2011)CrossRefGoogle Scholar
  76. 76.
    H. Kipphan (ed.), Handbook of Print Media (Springer, Berlin, 2001)Google Scholar
  77. 77.
    G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, M. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRefGoogle Scholar
  78. 78.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRefGoogle Scholar
  79. 79.
    E.B. Secor, M.C. Hersam, Graphene inks for printed electronics, Accessed 24 May 2015
  80. 80.
    W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015)CrossRefGoogle Scholar
  81. 81.
    New graphene based inks for high-speed manufacturing of printed electronics, University of Cambridge,
  82. 82.
    IDTechEx, Graphene, 2D materials, and carbon nanotubes 2017–2027. Technical report (2017)Google Scholar
  83. 83.
    Technavio, Global graphene market 2016–2020. Technical report, Infiniti Research Limited (2017)Google Scholar
  84. 84.
    Beige Market Intelligence, Strategic assessment of worldwide graphene composites market - till 2021. Technical report (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Leonard W. T. Ng
    • 1
  • Guohua Hu
    • 1
  • Richard C. T. Howe
    • 1
  • Xiaoxi Zhu
    • 1
  • Zongyin Yang
    • 1
  • Christopher G. Jones
    • 2
  • Tawfique Hasan
    • 1
  1. 1.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK
  2. 2.Novalia Ltd.CambridgeUK

Personalised recommendations