Advertisement

A Situational Approach for the Definition and Tailoring of a Data-Driven Software Evolution Method

  • Xavier FranchEmail author
  • Jolita Ralyté
  • Anna Perini
  • Alberto Abelló
  • David Ameller
  • Jesús Gorroñogoitia
  • Sergi Nadal
  • Marc Oriol
  • Norbert Seyff
  • Alberto Siena
  • Angelo Susi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10816)

Abstract

Successful software evolution heavily depends on the selection of the right features to be included in the next release. Such selection is difficult, and companies often report bad experiences about user acceptance. To overcome this challenge, there is an increasing number of approaches that propose intensive use of data to drive evolution. This trend has motivated the SUPERSEDE method, which proposes the collection and analysis of user feedback and monitoring data as the baseline to elicit and prioritize requirements, which are then used to plan the next release. However, every company may be interested in tailoring this method depending on factors like project size, scope, etc. In order to provide a systematic approach, we propose the use of Situational Method Engineering to describe SUPERSEDE and guide its tailoring to a particular context.

Keywords

Software evolution Situational method engineering Software process 

Notes

Acknowledgments

This work is a result of the SUPERSEDE project, funded by the EU’s H2020 Programme under the agreement number 644018.

References

  1. 1.
    Wang, X., Guarino, N., Guizzardi, G., Mylopoulos, J.: Software as a social artifact: a management and evolution perspective. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 321–334. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12206-9_27CrossRefGoogle Scholar
  2. 2.
    Mens, T., Serebrenik, A., Cleve, A. (eds.): Evolving Software Systems. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45398-4CrossRefGoogle Scholar
  3. 3.
    Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68(9), 1060–1076 (1980)CrossRefGoogle Scholar
  4. 4.
    Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational Method Engineering. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-41467-1CrossRefGoogle Scholar
  5. 5.
    Stade, M., et al.: D3.1: Requirements for Methods and Tools. SUPERSEDE project deliverable (2015). www.supersede.eu
  6. 6.
    Ralyté, J., Rolland, C.: An approach for method reengineering. In: S.Kunii, H., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45581-7_35CrossRefGoogle Scholar
  7. 7.
    Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45017-3_9CrossRefGoogle Scholar
  8. 8.
    Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and roadmap-driven approaches. Requir. Eng. J. 11, 58–78 (2006)CrossRefGoogle Scholar
  9. 9.
    Ralyté, J.: Towards situational methods for information systems development: engineering reusable method chunks. In: ISD 2004 (2004)Google Scholar
  10. 10.
    Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02161-9_3CrossRefGoogle Scholar
  11. 11.
    Stade, M., Fotrousi, F., Seyff, N., Albrecht, O.: Feedback gathering from an industrial point of view. In: RE 2017 (2017)Google Scholar
  12. 12.
    Nadal, S., et al.: A software reference architecture for semantic-aware big data systems. Inf. Softw. Technol. 90, 75–92 (2017)CrossRefGoogle Scholar
  13. 13.
    Morales-Ramirez, I., Kifetew, F.M., Perini, A.: Analysis of online discussions in support of requirements discovery. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 159–174. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_11CrossRefGoogle Scholar
  14. 14.
    Guzmán, E., Alkadhi, R., Seyff, N.: An exploratory study of twitter messages about software applications. Requir. Eng. J. 22(3), 387–412 (2017)CrossRefGoogle Scholar
  15. 15.
    Busetta, P., et al: Tool-supported collaborative requirements prioritisation. In: COMPSAC 2017 (2017)Google Scholar
  16. 16.
    Ameller, D., et al.: Replan: a release planning tool. In: SANER 2017 (2017)Google Scholar
  17. 17.
    Ameller, D. et al.: Towards continuous software release planning. In: SANER 2017 (2017)Google Scholar
  18. 18.
    Object Management Group (OMG): Software & Systems Process Engineering Meta-Model Specification (SPEM), Version 2.0. Technical report, April 2008Google Scholar
  19. 19.
    Ribó, J.M., Franch, X.: A precedence-based approach for proactive control in software process modelling. In: SEKE 2002 (2002)Google Scholar
  20. 20.
    Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. https://arxiv.org/abs/1605.07767
  21. 21.
    López, L., Costal, D., Ralyté, J., Franch, X., Méndez, L., Annosi, M.C.: OSSAP – a situational method for defining open source software adoption processes. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 524–539. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_32CrossRefGoogle Scholar
  22. 22.
    López, L., Behutiye, W., Karhapää, P., Ralyté, J., Franch, X., Oivo, M.: Agile quality requirements management best practices portfolio: a situational method engineering approach. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 548–555. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69926-4_45CrossRefGoogle Scholar
  23. 23.
    Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirement modeling and analysis. Requir. Eng. J. 15(4), 439–458 (2010)CrossRefGoogle Scholar
  24. 24.
    Frank, U.: Domain-specific modeling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering. Springer, Berlin, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36654-3_6CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xavier Franch
    • 1
    Email author
  • Jolita Ralyté
    • 2
  • Anna Perini
    • 3
  • Alberto Abelló
    • 1
  • David Ameller
    • 1
  • Jesús Gorroñogoitia
    • 4
  • Sergi Nadal
    • 1
  • Marc Oriol
    • 1
  • Norbert Seyff
    • 5
  • Alberto Siena
    • 6
  • Angelo Susi
    • 4
  1. 1.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.University of GenevaGenevaSwitzerland
  3. 3.Fondazione Bruno Kessler (FBK)TrentoItaly
  4. 4.ATOSMadridSpain
  5. 5.University of Applied Sciences Northwestern Switzerland (FHNW)WindischSwitzerland
  6. 6.Delta Informatica SpATrentoItaly

Personalised recommendations