Advertisement

DMN Decision Execution on the Ethereum Blockchain

  • Stephan HaarmannEmail author
  • Kimon Batoulis
  • Adriatik Nikaj
  • Mathias Weske
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10816)

Abstract

Recently blockchain technology has been introduced to execute interacting business processes in a secure and transparent way. While the foundations for process enactment on blockchain have been researched, the execution of decisions on blockchain has not been addressed yet. In this paper we argue that decisions are an essential aspect of interacting business processes, and, therefore, also need to be executed on blockchain. The immutable representation of decision logic can be used by the interacting processes, so that decision taking will be more secure, more transparent, and better auditable. The approach is based on a mapping of the DMN language S-FEEL to Solidity code to be run on the Ethereum blockchain. The work is evaluated by a proof-of-concept prototype and an empirical cost evaluation.

Keywords

Blockchain Interacting processes DMN 

Notes

Acknowledgements

We thank Alexander Kastius for his valuable contribution to the prototype implementation.

References

  1. 1.
    Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd edn. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28616-2CrossRefGoogle Scholar
  2. 2.
    OMG: Business process model and notation, specification 2.0. Version 2 (2011)Google Scholar
  3. 3.
    OMG: Decision model and notation, specification 1.1. Version 1.1 (2016)Google Scholar
  4. 4.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19069-3_22CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational workflows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 140–156. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45341-5_10CrossRefGoogle Scholar
  6. 6.
    Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_19CrossRefGoogle Scholar
  7. 7.
    Dannen, C.: Introducing Ethereum and Solidity. Apress, Berkeley (2017).  https://doi.org/10.1007/978-1-4842-2535-6CrossRefGoogle Scholar
  8. 8.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  9. 9.
    Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)CrossRefGoogle Scholar
  10. 10.
    Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies - A Comprehensive Introduction. Princeton University Press, Princeton (2016)zbMATHGoogle Scholar
  11. 11.
    de Kruijff, J., Weigand, H.: Understanding the blockchain using enterprise ontology. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 29–43. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_3CrossRefGoogle Scholar
  12. 12.
    Mendling, J., Weber, I., et al.: Blockchains for business process management - challenges and opportunities. CoRR abs/1704.03610 (2017)Google Scholar
  13. 13.
    Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business processes utilizing the bitcoin blockchain. CoRR abs/1706.04404 (2017)Google Scholar
  14. 14.
    López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: a blockchain-based business process management system. In: Proceedings of the BPM Demo Track and BPM Dissertation Award Co-Located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, 13 September 2017 (2017)Google Scholar
  15. 15.
    Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9) (1997)Google Scholar
  16. 16.
    Kõlvart, M., Poola, M., Rull, A.: Smart contracts. In: Kerikmäe, T., Rull, A. (eds.) The Future of Law and eTechnologies, pp. 133–147. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26896-5_7CrossRefGoogle Scholar
  17. 17.
    Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based smart contracts for blockchain systems. In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42019-6_11CrossRefGoogle Scholar
  18. 18.
    Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum Smart Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54455-6_8CrossRefGoogle Scholar
  19. 19.
    Buterin, V.: Secret sharing DAOs: the other crypto 2.0 (2014)Google Scholar
  20. 20.
    Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 839–858 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stephan Haarmann
    • 1
    Email author
  • Kimon Batoulis
    • 1
  • Adriatik Nikaj
    • 1
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany

Personalised recommendations