Fusion-Based Process Discovery

  • Yossi Dahari
  • Avigdor Gal
  • Arik SenderovichEmail author
  • Matthias Weidlich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10816)


Information systems record the execution of transactions as part of business processes in event logs. Process mining analyses such event logs, e.g., by discovering process models. Recently, various discovery algorithms have been proposed, each with specific advantages and limitations. In this work, we argue that, instead of relying on a single algorithm, the outcomes of different algorithms shall be fused to combine the strengths of individual approaches. We propose a general framework for such fusion and instantiate it with two new discovery algorithms: The Exhaustive Noise-aware Inductive Miner (exNoise), which, exhaustively searches for model improvements; and the Adaptive Noise-aware Inductive Miner (adaNoise), a computationally tractable version of exNoise. For both algorithms, we formally show that they outperform each of the individual mining algorithms used by them. Our empirical evaluation further illustrates that fusion-based discovery yields models of better quality than state-of-the-art approaches.


  1. 1.
    Dumas, M., Van der Aalst, W.M., Ter Hofstede, A.H.: Process-Aware Information Systems. Wiley, New York (2005)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). Scholar
  3. 3.
    Dumas, M., García-Bañuelos, L.: Process mining reloaded: event structures as a unified representation of process models and event logs. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015). Scholar
  4. 4.
    Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A., Mecella, M., Soo, A.: Automated discovery of process models from event logs: review and benchmark. CoRR abs/1705.02288 (2017)Google Scholar
  5. 5.
    van der Aalst, W.M.P.: On the representational bias in process mining. In: WETICE, pp. 2–7. IEEE CS (2011)Google Scholar
  6. 6.
    Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.: Quality dimensions in process discovery: the importance of fitness, precision, generalization and simplicity. IJCIS 23(01), 1440001–1440040 (2014)Google Scholar
  7. 7.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). Scholar
  8. 8.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). Scholar
  9. 9.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable process models from collections of event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013). Scholar
  10. 10.
    Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies. Springer, Heidelberg (2013). Scholar
  11. 11.
    Suzuki, I., Murata, T.: A method for stepwise refinement and abstraction of petri nets. J. Comput. Syst. Sci. 27(1), 51–76 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inf. 94(3–4), 387–412 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). Scholar
  15. 15.
    Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  16. 16.
    Dahari, Y., Gal, A., Senderovich, A.: EDU-ProM: ProM for the classroom. In: BPM Demo. CEUR, vol. 1920. (2017)Google Scholar
  17. 17.
    Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010). Scholar
  18. 18.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer, New York (2001). Scholar
  19. 19.
    Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317. IEEE (2011)Google Scholar
  20. 20.
    Cnudde, S.D., Claes, J., Poels, G.: Improving the quality of the heuristics miner in ProM 6.2. Expert Syst. Appl. 41(17), 7678–7690 (2014)CrossRefGoogle Scholar
  21. 21.
    Augusto, A., Conforti, R., Dumas, M., Rosa, M.L.: Split miner: discovering accurate and simple business process models from event logs. In: ICDM (2017)Google Scholar
  22. 22.
    van der Aalst, W.M.P., Verbeek, H.M.W.: Process discovery and conformance checking using passages. Fundam. Inform. 131(1), 103–138 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)CrossRefGoogle Scholar
  24. 24.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded petri nets. IEEE Trans. Comput. 59(3), 371–384 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE TKDE 25(12), 2708–2720 (2013)Google Scholar
  26. 26.
    Chatain, T., Carmona, J., van Dongen, B.: Alignment-based trace clustering. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 295–308. Springer, Cham (2017). Scholar
  27. 27.
    Sun, Y., Bauer, B., Weidlich, M.: Compound trace clustering to generate accurate and simple sub-process models. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 175–190. Springer, Cham (2017). Scholar
  28. 28.
    Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M.: Slice, mine and dice: complexity-aware automated discovery of business process models. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer, Heidelberg (2013). Scholar
  29. 29.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005). Scholar
  30. 30.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: CEC, pp. 1–8. IEEE (2012)Google Scholar
  31. 31.
    Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and model we trust? a generalized conformance checking framework. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 179–196. Springer, Cham (2016). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yossi Dahari
    • 1
  • Avigdor Gal
    • 1
  • Arik Senderovich
    • 1
    Email author
  • Matthias Weidlich
    • 2
  1. 1.Technion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations