Skip to main content

An Invariant-Region-Preserving (IRP) Limiter to DG Methods for Compressible Euler Equations

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

  • 1266 Accesses

Abstract

We introduce an explicit invariant-region-preserving limiter applied to DG methods for compressible Euler equations. The invariant region considered consists of positivity of density and pressure and a maximum principle of a specific entropy. The modified polynomial by the limiter preserves the cell average, lies entirely within the invariant region, and does not destroy the high order of accuracy for smooth solutions, as long as the cell average stays away from the boundary of the invariant region. Numerical tests are presented to illustrate the properties of the limiter. In particular, the tests on Riemann problems show that the limiter helps to damp the oscillations near discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Frid, Maps of convex sets and invariant regions for finite-difference systems of conservation laws. Arch. Rational Mech. Anal. 160(3), 245–269 (2001)

    Article  MathSciNet  Google Scholar 

  2. J.-L. Guermond, B. Popov, Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54(4), 2466–2489 (2016)

    Article  MathSciNet  Google Scholar 

  3. D. Hoff, Invariant regions for systems of conservation laws. Trans. Am. Math. Soc. 289(2), 591–610 (1985)

    Article  MathSciNet  Google Scholar 

  4. Y. Jiang, H. Liu, An invariant-region-preserving limiter for DG schemes to isentropic Euler equations. To appear in Numerical Methods Partial Differential Equation (2018)

    Google Scholar 

  5. Y. Jiang, H. Liu, Invariant-region-preserving DG Methods for Multi-dimensional Hyperbolic Conservation Law Systems, with an Application to Compressible Euler Equations. J. Comput. Phys. (2018). http://doi.org/10.1016/j.jcp.2018.03.004

  6. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  7. B. Perthame, C.-W. Shu, On positivity preserving finite volume schemes for Euler equations. Numerische Mathematik 73, 119–130 (1996)

    Article  MathSciNet  Google Scholar 

  8. C.-W. Shu, Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  Google Scholar 

  9. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  10. J. Smoller, Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wissenschaften, vol. 258 (Springer, New York, 1983)

    Google Scholar 

  11. E. Tadmor, A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2, 211–219 (1986)

    Article  MathSciNet  Google Scholar 

  12. X. Zhang, On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations. J. Comput. Phys. 328, 301343 (2017)

    Article  MathSciNet  Google Scholar 

  13. X. Zhang, C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  Google Scholar 

  14. X. Zhang, C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  Google Scholar 

  15. X. Zhang, C.-W. Shu, A minimum entropy principle of high order schemes for gas dynamics equations. Numerische Mathematik 121, 545–563 (2012)

    Article  MathSciNet  Google Scholar 

  16. X. Zhang, Y. Xia, C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under Grant DMS1312636 and by NSF Grant RNMS (KI-Net) 1107291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Liu, H. (2018). An Invariant-Region-Preserving (IRP) Limiter to DG Methods for Compressible Euler Equations. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_5

Download citation

Publish with us

Policies and ethics