Skip to main content

General Linear Methods for Time-Dependent PDEs

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

The hybridized discontinuous Galerkin method has been successfully applied to time-dependent problems using implicit time integrators. These integrators stem from the ‘classical’ class of backward differentiation formulae (BDF) and diagonally implicit Runge–Kutta (DIRK) methods. We extend this to the class of general linear methods (GLMs) that unify multistep and multistage methods into one framework. We focus on diagonally implicit multistage integration methods (DIMSIMs) that can have the same desirable stability properties like DIRK methods while also having high stage order. The presented numerical results confirm that the applied DIMSIMs achieve expected approximation properties for linear and nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Bui-Thanh, From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. J. Comput. Phys. 295, 114–146 (2015)

    Article  MathSciNet  Google Scholar 

  2. J. Butcher, H. Podhaisky, On error estimation in general linear methods for stiff ODEs. Appl. Numer. Math. 56(3), 345–357 (2006)

    Article  MathSciNet  Google Scholar 

  3. J.C. Butcher, On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20(93), 1–10 (1966)

    Article  MathSciNet  Google Scholar 

  4. J.C. Butcher, Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11(5), 347–363 (1993)

    Article  MathSciNet  Google Scholar 

  5. J.C. Butcher, General linear methods. Acta Numer. 15, 157–256 (2006)

    Article  MathSciNet  Google Scholar 

  6. J.C. Butcher, Z. Jackiewicz, A reliable error estimation for diagonally implicit multistage integration methods. BIT Numer. Math. 41(4), 656–665 (2001)

    Article  MathSciNet  Google Scholar 

  7. J.C. Butcher, P. Chartier, Z. Jackiewicz, Nordsieck representation of DIMSIMs. Numer. Algorithms 16(2), 209–230 (1997)

    Article  MathSciNet  Google Scholar 

  8. A. Cardone, Z. Jackiewicz, J.H. Verner, B. Welfert, Order conditions for general linear methods. J. Comput. Appl. Math. 290, 44–64 (2015)

    Article  MathSciNet  Google Scholar 

  9. B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  10. A. Gopinath, A. Jameson, Application of the time spectral method to periodic unsteady vortex sheeding. AIAA Paper 06-0449 (2006)

    Google Scholar 

  11. R.D. Henderson, Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7, 2102–2104 (1995)

    Article  Google Scholar 

  12. J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Mathematics, vol. 54 (Springer, Berlin, 2008)

    Book  Google Scholar 

  13. Z. Jackiewicz, Implementation of DIMSIMs for stiff differential systems. Appl. Numer. Math. 42(1–3), 251–267 (2002)

    Article  MathSciNet  Google Scholar 

  14. Z. Jackiewicz, Construction and implementation of general linear methods for ordinary differential equations: a review. J. Sci. Comput. 25(1), 29–49 (2005)

    Article  MathSciNet  Google Scholar 

  15. A. Jaust, J. Schütz, A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows. Comput. Fluids 98, 177–185 (2014)

    Article  MathSciNet  Google Scholar 

  16. A. Jaust, J. Schütz, D.C. Seal, Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws. J. Sci. Comput. 69, 866–891 (2016)

    Article  MathSciNet  Google Scholar 

  17. N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228, 3232–3254 (2009)

    Article  MathSciNet  Google Scholar 

  18. N.C. Nguyen, J. Peraire, B. Cockburn, High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011)

    Article  MathSciNet  Google Scholar 

  19. A. Nordsieck, On numerical integration of ordinary differential equations. Math. Comput. 16, 22–49 (1962)

    Article  MathSciNet  Google Scholar 

  20. D.A.D. Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 (Springer Science & Business Media, New York, 2011)

    MATH  Google Scholar 

  21. W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Laboratory (1973)

    Google Scholar 

  22. J. Schütz, G. May, A hybrid mixed method for the compressible Navier-Stokes equations. J. Comput. Phys. 240, 58–75 (2013)

    Article  MathSciNet  Google Scholar 

  23. J. Schütz, G. May, An adjoint consistency analysis for a class of hybrid mixed methods. IMA J. Numer. Anal. 34(3), 1222–1239 (2014)

    Article  MathSciNet  Google Scholar 

  24. P.E. Vos, C. Eskilsson, A. Bolis, S. Chun, R.M. Kirby, S.J. Sherwin, A generic framework for time-stepping partial differential equations (PDEs): general linear methods, object-oriented implementation and application to fluid problems. Int. J. Comput. Fluid Dyn. 25(3), 107–125 (2011)

    Article  MathSciNet  Google Scholar 

  25. C. Williamson, Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  26. M. Woopen, G. May, J. Schütz, Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 76, 811–834 (2014)

    Article  MathSciNet  Google Scholar 

  27. W. Wright, General linear methods with inherent Runge-Kutta stability. Ph.D. thesis, University of Auckland (2002)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Special Research Fund (BOF) of Hasselt University. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government—department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Jaust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaust, A., Schütz, J. (2018). General Linear Methods for Time-Dependent PDEs. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_4

Download citation

Publish with us

Policies and ethics