Skip to main content

Structure Preserving Schemes for Mean-Field Equations of Collective Behavior

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

In this paper, we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang–Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation, and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes, whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Albi, L. Pareschi, G. Toscani, M. Zanella, Recent advances in opinion modeling: control and social influence, in Active Particles, Volume 1. Modeling and Simulation in Science, Engineering and Technology, ed. by N. Bellomo, P. Degond, E. Tadmor (Birkhäuser, cham, 2017)

    Chapter  Google Scholar 

  2. G. Albi, L. Pareschi, M. Zanella, Opinion dynamics over complex networks: kinetic modeling and numerical methods. Kinet. Relat. Models 10(1), 1–32 (2017)

    Article  MathSciNet  Google Scholar 

  3. A.B.T. Barbaro, P. Degond, Phase transition and diffusion among socially interacting self-propelled agents. Discret. Contin. Dyn. Syst. - Ser. B 19, 1249–1278 (2014)

    Article  MathSciNet  Google Scholar 

  4. F. Bolley, J.A. Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci. 21(11), 2179 (2011)

    Article  MathSciNet  Google Scholar 

  5. N. Bellomo, G. Ajmone Marsan, A. Tosin, Complex Systems and Society. Modeling and Simulation, Springer Briefs in Mathematics (Springer, Berlin, 2013)

    MATH  Google Scholar 

  6. C. Buet, S. Dellacherie, On the Chang and Cooper numerical scheme applied to a linear Fokker-Planck equation. Commun. Math. Sci. 8(4), 1079–1090 (2010)

    Article  MathSciNet  Google Scholar 

  7. C. Buet, S. Cordier, V. Dos Santos, A conservative and entropy scheme for a simplified model of granular media. Transp. Theory Stat. Phys. 33(2), 125–155 (2004)

    Article  MathSciNet  Google Scholar 

  8. J.A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010)

    Article  MathSciNet  Google Scholar 

  9. J.A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Particle, Kinetic and Hydrodynamic Models of Swarming (Birkhuser, Boston, 2010), pp. 297–336

    Chapter  Google Scholar 

  10. J.A. Carrillo, A. Chertock, Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17, 233–258 (2015)

    Article  MathSciNet  Google Scholar 

  11. J.S. Chang, G. Cooper, A practical difference scheme for Fokker-Planck equations. J. Comput. Phys. 6(1), 1–16 (1970)

    Article  Google Scholar 

  12. S. Cordier, L. Pareschi, G. Toscani, On a kinetic model for a simple market economy. J. Stat. Phys. 120(1–2), 253–277 (2005)

    Article  MathSciNet  Google Scholar 

  13. F. Cucker, S. Smale, Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  14. M.R. D’Orsogna, Y.L. Chuang, A.L. Bertozzi, L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability and collapse. Phys. Rev. Lett. 96, 104302 (2006)

    Article  Google Scholar 

  15. G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, Fokker-Planck equations in the modelling of socio-economic phenomena. Math. Models Methods Appl. Sci. 27(1), 115–158 (2017)

    Article  MathSciNet  Google Scholar 

  16. L. Gosse, Computing qualitatively correct approximations of Balance Laws. Exponential-Fit, Well-Balanced and Asymptotic-Preserving, SEMA SIMAI Springer Series (Springer, Berlin, 2013)

    Book  Google Scholar 

  17. S. Gottlieb, C.W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  18. E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equation I: Nonstiff Problems, vol. 8, Springer Series in Comput. Mathematics (Springer, Berlin, 1987). Second revised edition 1993

    Google Scholar 

  19. E.W. Larsen, C.D. Levermore, G.C. Pomraning, J.G. Sanderson, Discretization methods for one-dimensional Fokker-Planck operators. J. Comput. Phys. 61(3), 359–390 (1985)

    Article  MathSciNet  Google Scholar 

  20. L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, 2013)

    MATH  Google Scholar 

  21. L. Pareschi, G. Toscani, Wealth distribution and collective knowledge: a Boltzmann approach. Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 372(2028), 20130396 (2014)

    Article  MathSciNet  Google Scholar 

  22. L. Pareschi, M. Zanella, Structure preserving schemes for nonlinear Fokker-Planck equations and applications. J. Sci. Comput. 74(3), 1575–1600 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Pareschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pareschi, L., Zanella, M. (2018). Structure Preserving Schemes for Mean-Field Equations of Collective Behavior. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_31

Download citation

Publish with us

Policies and ethics