Skip to main content

A Phase-Field Model for Flows with Phase Transition

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems II (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 237))

Abstract

There are many mathematical models for describing compressible or incompressible flows with phase transition. In this contribution, we will focus on the Navier–Stokes–Korteweg model [12] (Appl Math Comput 272, part 2, 309–335, 2016) and a phase-field model: The compressible Navier–Stokes–Allen–Cahn model (NSAC) is able to model compressible two-phase flows including surface tension effects and phase transitions. In this contribution, we will present a discontinuous Galerkin scheme for the NSAC model. The scheme is designed to fulfill a discrete version of the free energy inequality, which is the second law of thermodynamics in the isothermal case. For situations near the thermodynamic equilibrium, this property suppresses so-called parasitic currents, which are unphysical velocity fields near the phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Alt, The entropy principle for interfaces. Fluids and solids. Adv. Math. Sci. Appl. 19(2), 585–663 (2009)

    MathSciNet  MATH  Google Scholar 

  2. H.W. Alt, W. Alt, Phase boundary dynamics: transitions between ordered and disordered lipid monolayers. Interfaces Free Bound. 11(1), 1–36 (2009)

    Article  MathSciNet  Google Scholar 

  3. H.W. Alt, G. Witterstein, Distributional equation in the limit of phase transition for fluids. Interfaces Free Bound. 13(4), 531–554 (2011)

    Article  MathSciNet  Google Scholar 

  4. D. Arnold, F. Brezzi, B. Cockburn, D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  5. G. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, C. Kraus, A diffuse interface model for quasi-incompressible flows: sharp interface limits and numerics. ESAIM Proc. 38, 54–77 (2012)

    Article  MathSciNet  Google Scholar 

  6. T. Blesgen, Generalization of the Navier-Stokes equations to two-phase flows. (Eine Verallgemeinerung der Navier–Stokes–Gleichungen auf Zweiphasenstrmungen.) Ph.D. thesis Bonn, Hohe Mathematisch-Naturwissenschaftliche Fakultät, 100 S (1997)

    Google Scholar 

  7. D. Bresch, B. Desjardins, C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Commun. Partial Differ. Equ. 28(3), 843–868 (2003)

    Article  MathSciNet  Google Scholar 

  8. S. Benzoni-Gavage, R. Danchin, S. Descombes, Well-posedness of One-dimensional Korteweg Models, preprint (2004)

    Google Scholar 

  9. S. Benzoni-Gavage, R. Danchin, S. Descombes, On the Well-posedness for the Euler–Korteweg Model in Several Space Dimensions, preprint (2005)

    Google Scholar 

  10. J. Daube, Sharp Interface Limit for the Navier–Stokes–Korteweg Equations, thesis, Freiburg (2016)

    Google Scholar 

  11. D. Diehl, Higher order schemes for simulation of compressible liquid-vapor flows with phase change. Ph.D thesis, Universität Freiburg (2007), https://freidok.uni-freiburg.de/volltexte/3762/

  12. D. Diehl, J. Kremser, D. Kröner, C. Rohde, Numerical solution of Navier–Stokes–Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput. 272, part 2, 309–335 (2016)

    Article  MathSciNet  Google Scholar 

  13. W. Dreyer, C. Kraus, On the van der Waals–Cahn–Hilliard phase-field model and its equilibria conditions in the sharp interface limit. Proc. R. Soc. Edinb. Sect. A, Math. 140(6), 1161–1186 (2010)

    Article  MathSciNet  Google Scholar 

  14. E. Feireisl, H. Petzeltova, E. Rocca, G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20(07), 1129–1160 (2010)

    Article  MathSciNet  Google Scholar 

  15. J. Giesselmann, C. Makridakis, T. Pryer, Energy consistent DG methods for the Navier–Stokes–Korteweg system. Math. Comput. 83(289), 2071–2099 (2014)

    Article  Google Scholar 

  16. K. Hermsdörfer, C. Kraus, D. Kröner, Interface conditions for limits of the Navier–Stokes–Korteweg model. Interfaces Free Bound. 13(2), 239–254 (2011)

    Article  MathSciNet  Google Scholar 

  17. M. Kotschote, Strong Well-posedness for a Korteweg-Type Model for the Dynamics of a Compressible Non-isothermal Fluid, Preprint Leipzig (2006)

    Google Scholar 

  18. M. Kotschote, Strong solutions of the Navier–Stokes equations for a compressible fluid of Allen–Cahn type. Arch. Ration. Mech. Anal. 206(2), 489–514 (2012)

    Article  MathSciNet  Google Scholar 

  19. M. Kraenkel, Discontinuous Galerkin Schemes for compressible Phasefield Flow, thesis, Freiburg (2017)

    Google Scholar 

  20. D. Kröner, Numerical Schemes for Conservation Laws (Wiley-Teubner, 1997)

    Google Scholar 

  21. L.D. Landau, E.M. Lifschitz, Hydrodynamik, 5, überarbeitete edn. (Akademie Verlag, Berlin, 1991)

    MATH  Google Scholar 

  22. J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A., Math. Phys. Eng. Sci 454(1978), 2617–2654 (1998)

    Article  MathSciNet  Google Scholar 

  23. A. Meurera et al., SymPy: symbolic computing in Python. Peer J. Comput. Sci. 3, e103 (2017)

    Article  Google Scholar 

  24. G. Witterstein, Sharp interface limit of phase change flows. Adv. Math. Sci. Appl. 20(2), 585–629 (2010)

    MathSciNet  MATH  Google Scholar 

  25. G. Witterstein, Phase change flows with mass exchange. Adv. Math. Sci. Appl. 21(2), 559–611 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Kröner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kränkel, M., Kröner, D. (2018). A Phase-Field Model for Flows with Phase Transition. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-91548-7_19

Download citation

Publish with us

Policies and ethics