Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 33))

  • 360 Accesses

Abstract

Reflexive games are just an abstract continuation of bio-inspired games. A high reflexivity of game is explained by a high level of modifications of involved actions and strategies at each game move. In this chapter, I will show that bio-inspired and reflexive games can be represented in the form of cellular automata. The more modified a cellular-automatic transition rule is at each step, the more reflexive our game is. For example, the Belousov-Zhabotinsky reaction can be described as a game, for which the transition rule does not change. It is a game of zero reflexion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schumann, A.: Towards theory of massive-parallel proofs. cellular automata approach. Bull. Sect. Log. 39(3/4), 133–145 (2010)

    Google Scholar 

  2. Schumann, A.: Qal wa-homer and theory of massive-parallel proofs. History Philos. Log. 32(1), 71–83 (2011)

    Article  Google Scholar 

  3. Schumann, A.: Proof-theoretic cellular automata as logic of unconventional computing. Int. J. Unconv. Comput. 8(3), 263–280 (2012)

    Google Scholar 

  4. Schumann, A.: Payoff cellular automata and reflexive games. J. Cell. Autom. 9(4), 287–313 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quantum Inf. Process 1–16 (2013)

    Google Scholar 

  6. Alonso-Sanz, R.: A quantum prisoner’s dilemma cellular automaton. In: Proceedings of the Royal Society of London, vol. 470, p. 20130793. The Royal Society (2014)

    Article  MathSciNet  Google Scholar 

  7. Alonso-Sanz, R., Martín, M.C., Martin, M.: The effect of memory in the spatial continuous-valued prisoner’s dilemma. Int. J. Bifurc. Chaos 11(08), 2061–2083 (2001)

    Article  Google Scholar 

  8. Smith, V.L.: Constructivist and ecological rationality in economics. Am. Econ. Rev. 93(3), 465–508 (2003)

    Article  Google Scholar 

  9. Albin, P.S.: Essays on economic complexity and dynamics in interactive systems. In: Barriers and Bound to Rationality. Princeton University Press (1998)

    Google Scholar 

  10. Aumann, R.J.: Agreeing to disagree. The Ann. Stat. 4(6), 1236–1239 (1976)

    Article  MathSciNet  Google Scholar 

  11. Schumann, A.: Reflexive games and non-archimedean probabilities. P-Adic Numbers Ultrametr. Anal. Appl. 6(1), 66–79 (2014)

    Article  MathSciNet  Google Scholar 

  12. Schumann, A.: Anti-platonic logic and mathematics. Mult. Valued Log. Soft Comput. 21(1–2), 53–88 (2013)

    MathSciNet  Google Scholar 

  13. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press (2005)

    Google Scholar 

  14. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: B. Beckert (ed.) TABLEAUX 2005, volume 3702 of LNAI, pp. 78–92. Springer (2005)

    Google Scholar 

  15. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D. thesis, University of Edinburgh (2006)

    Google Scholar 

  16. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite descent. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pp. 51–62 (2007)

    Google Scholar 

  17. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In: Proceedings of FoSSaCS 2002, LNCS 2303, pp. 357–371. Springer, Grenoble (2002)

    Google Scholar 

  18. Morita, K., Imai, K.: Logical Universality and Self-Reproduction in Reversible Cellular Automata. ICES (1996)

    Google Scholar 

  19. Adamatzky, A.: Physarum machines: computers from slime mould. In: World Scientific, Series on Nonlinear Science. Series A (2010)

    Google Scholar 

  20. Shirakawa, T., Sato, H., Ishiguro, S.: Constrcution of living cellular automata using the Physarum polycephalum. Int. J. General Syst. 44, 292–304 (2015)

    Article  MathSciNet  Google Scholar 

  21. Tsompanas, M.I., Adamatzky, A., Ieropoulos, I., Phillips, N., Sirakoulis, G.C., Greenman, J.: Cellular non-linear network model of microbial fuel cell. Biosystems 156, 53–62 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Schumann .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schumann, A. (2019). Payoff Cellular Automata and Reflexive Games. In: Behaviourism in Studying Swarms: Logical Models of Sensing and Motoring. Emergence, Complexity and Computation, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-91542-5_11

Download citation

Publish with us

Policies and ethics