On Acceleration of Krylov-Subspace-Based Newton and Arnoldi Iterations for Incompressible CFD: Replacing Time Steppers and Generation of Initial Guess

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 50)


We propose two techniques aimed at improving the convergence rate of steady state and eigenvalue solvers preconditioned by the inverse Stokes operator and realized via time-stepping. First, we suggest a generalization of the Stokes operator so that the resulting preconditioner operator depends on several parameters and whose action preserves zero divergence and boundary conditions. The parameters can be tuned for each problem to speed up the convergence of a Krylov-subspace-based linear algebra solver. This operator can be inverted by the Uzawa-like algorithm, and does not need a time-stepping. Second, we propose to generate an initial guess of steady flow, leading eigenvalue and eigenvector using orthogonal projection on a divergence-free basis satisfying all boundary conditions. The approach, including the two proposed techniques, is illustrated on the solution of the linear stability problem for laterally heated square and cubic cavities.


CFD Krylov methods Newton solver Eigenvalue solver Linear stability 


  1. 1.
    Acharya, S., Baliga, B.R., Karki, K., Murthy, J.Y., Prakash, C., Vanka, S.P.: Pressure-based finite-volume methods in computational fluid dynamics. J Heat Transf. 129, 407–424 (2007)CrossRefGoogle Scholar
  2. 2.
    Beaume, C., Bergeon, A., Knobloch, E.: Homoclinic snaking of localized states in doubly diffusive convection. Phys. Fluids 23, 094102 (2011)CrossRefGoogle Scholar
  3. 3.
    Beaume, C., Chini, G.P., Julien, K., Knobloch, E.: Reduced description of exact coherent states in parallel shear flows. Phys. Rev. E 91, 043010 (2015)CrossRefGoogle Scholar
  4. 4.
    Borońska, K., Tuckerman, L.S.: Extreme multiplicity in cylindrical Rayleigh-Bénard convection. I. Time dependence and oscillations. Phys. Rev. E 81, 036320 (2010)CrossRefGoogle Scholar
  5. 5.
    Borońska, K., Tuckerman, L.S.: Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification. Phys. Rev. E 81, 036321 (2010)CrossRefGoogle Scholar
  6. 6.
    Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 110, 82–102 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dijkstra, H.A., Wubs, F.W., Cliffe, A.K., Doedel, E., Dragomirescu, I.F., Eckhardt, B., Gelfgat, A.Y., Hazel, A.L., Lucarini, V., Salinger, A.G., Phipps, E.T., Sanchez-Umbria, J., Schuttelaars, H., Tuckerman, L.S., Thiele, U.: Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Commun. Comput. Phys. 15, 1–45 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Feldman, Y., Gelfgat, A.Y.: On pressure-velocity coupled time-integration of incompressible Navier-Stokes equations using direct inversion of Stokes operator or accelerated multigrid technique. Comput. Struct. 87, 710–720 (2009)CrossRefGoogle Scholar
  9. 9.
    Feldman, Y.: Direct numerical simulation of transitions and supercritical regimes in confined three dimensional recirculating flows, PhD Thesis, Tel-Aviv University (2011)Google Scholar
  10. 10.
    Gelfgat, A.Y.: Two- and three-dimensional instabilities of confined flows: numerical study by a global Galerkin method. Comput. Fluid Dyn. J. 9, 437–448 (2001)Google Scholar
  11. 11.
    Gelfgat, A.Y.: Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections. Comput. Fluids 97, 143–155 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gelfgat, A.Y.: Stability of convective flows in cavities: solution of benchmark problems by a low-order finite volume method. Int. J. Numer. Meths. Fluids 53, 485–506 (2007)CrossRefGoogle Scholar
  13. 13.
    Janssen, R.J.A., Henkes, R.A.W.M., Hoogendoorn, C.J.: Transition to time-periodicity of a natural convection flow in a 3D differentially heated cavity. Int. J. Heat Mass Transfer 36, 2927–2940 (1993)CrossRefGoogle Scholar
  14. 14.
    Juniper, M.P., Hanifi, A., Theofilis, V.: Modal stability theory. Appl. Mech. Rev. 66, 024804 (2014)CrossRefGoogle Scholar
  15. 15.
    Labrosse, G., Tric, E., Khallouf, H., Betrouni, M.: A direct (pseudo-spectral) solver of the 2D/3D Stokes problem: transition to unsteadiness of natural-convection flow in a differentially heated cubical cavity. Numer. Heat Transf. Pt. B 31, 261–276 (1997)CrossRefGoogle Scholar
  16. 16.
    Scott, J.A.: An Arnoldi code for computing selected eigenvalues of sparse real unsymmetric matrices. ACM Trans. Math. Softw. 21, 432–475 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Slejipen, L.G., Fokkema, D.R.: BiCGstab(L) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1, 11–32 (1993)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Soucasse, L., Riviére, Ph, Soufani, A., Xin, S., Le Quéré, P.: Transitional regimes of natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation. Phys. Fluids 26, 024105 (2014)CrossRefGoogle Scholar
  20. 20.
    Tau, E.Y.: Numerical solution of the steady Stokes equations. J. Comput. Phys. 99, 190–195 (1992)CrossRefGoogle Scholar
  21. 21.
    Theofilis, V.: Global linear stability. Ann. Rev. Fluid Mech. 43, 319–3520 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tuckerman, L.S., Barkley, D.: Bifurcation analysis for time-steppers. In: Doedel, K., Tuckerman, L. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. IMA Volumes in Mathematics and Its Applications, vol. 119, pp. 453–466. Springer, New York (2000)Google Scholar
  23. 23.
    Tuckerman, L.S., Bertagnolio, F., Daube, O., Le Quéré, P., Barkley, D.: Stokes preconditioning for the inverse Arnoldi method. In. Henry, D., Bergeon, A. (eds.) Continuation Methods for Fluid Dynamics. Notes on Numerical Fluid Dynamics, vol. 74, pp. 241–255. Vieweg, Göttingen (2000)Google Scholar
  24. 24.
    Tuckerman, L.S.: Laplacian preconditioning for the inverse Arnoldi Method. Commun. Comput. Phys. 18, 1336–1351 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    van der Vorst, H.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  26. 26.
    Vitoshkin, H., Gelfgat, A.Y.: On direct and semi-direct inverse of Stokes, Helmholtz and Laplacian operators in view of time-stepper-based Newton and Arnoldi solvers in incompressible CFD. Commun. Comput. Phys. 14, 1103–1119 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, B.-F., Wan, Z.-H., Ma, D.-J., Sun, D.-J.: Rayleigh-Bénard convection in a vertical annular container near the convection threshold. Phys. Rev. E 89, 043014 (2014)CrossRefGoogle Scholar
  28. 28.
    Xin, S., Le Quéré, P.: Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances. Fluid Dyn. Res. 44, 031419 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, S.-L., Oyanagi, Y., Sugihara, M.: Necessary and sufficient conditions for the convergence of Orthomin(k) on singular and inconsistent linear systems. Numer. Algorith. 36, 189–202 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Faculty of EngineeringTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations