Time-Stepping and Krylov Methods for Large-Scale Instability Problems

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 50)


With the ever increasing computational power available and the development of high-performances computing, investigating the properties of realistic very large-scale nonlinear dynamical systems has become reachable. It must be noted however that the memory capabilities of computers increase at a slower rate than their computational capabilities. Consequently, the traditional matrix-forming approaches wherein the Jacobian matrix of the system considered is explicitly assembled become rapidly intractable. Over the past two decades, so-called matrix-free approaches have emerged as an efficient alternative. The aim of this chapter is thus to provide an overview of well-grounded matrix-free methods for fixed points computations and linear stability analyses of very large-scale nonlinear dynamical systems.


  1. 1.
    Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009Google Scholar
  2. 2.
    Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier-Stokes equations by selective frequency damping. Phys. Fluids 18(6), 068102 (2006)CrossRefGoogle Scholar
  3. 3.
    Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: Lapack Users’ Guide, 3rd edn. SIAM (1999)Google Scholar
  4. 4.
    Antoulas, A.C.: Approximation of Large-scale Dynamical Systems. SIAM, Philadelphia (2005)Google Scholar
  5. 5.
    Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 1951 (1951)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bagheri, S., Åkervik, E., Brandt, L., Henningson, D.S.: Matrix-free methods for the stability and control of boundary layers. AIAA J. 47(5), 1057–1068 (2009)CrossRefGoogle Scholar
  7. 7.
    Bagheri, S., Henningson, D.S., Hoepffner, J., Schmid, P.J.: Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62(2), 020803 (2009)CrossRefGoogle Scholar
  8. 8.
    Basley, J., Pastur, L.R., Lusseyran, F., Faure, T.M., Delprat, N.: Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp. Fluids 50, 905–918 (2011)CrossRefGoogle Scholar
  9. 9.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)Google Scholar
  10. 10.
    Brandt, L.: The lift-up effect: The linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech.-B/Fluids 47, 80–96 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bridges, T.J., Morris, P.J.: Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437–460 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bridges, T.J., Morris, P.J.: Boundary layer stability calculations. Phys. Fluids 30:(11) (1987)CrossRefGoogle Scholar
  13. 13.
    Bucci, A.M.: Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements. Ph.D. thesis, École Nationale Supérieure d’Arts et Métiers-ENSAM (2017)Google Scholar
  14. 14.
    Bucci, M.A., Puckert, D.K., Andriano, C., Loiseau, J.-Ch., Cherubini, S., Robinet, J.-Ch., Rist. U.: Roughness-induced transition by quasi-resonance of a varicose global mode. J. Fluid Mech. 836, 167–191 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Campobasso, M.S., Giles, M.B.: Stabilization of a linear flow solver for turbomachinery aeroelasticity using recursive projection method. AIAA J. 42(9), 1765–1774 (2004)CrossRefGoogle Scholar
  16. 16.
    Chen, K.K., Rowley, C.W.:. H2 optimal actuator and sensor placement in the linearised complex Ginzburg-Landau system. J. Fluid Mech. 681, 241–260 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084110 (2015)CrossRefGoogle Scholar
  18. 18.
    Citro, V., Luchini, P., Giannetti, F., Auteri, F.: Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination. J. Comput. Phys. 344, 234–246 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cunha, G., Passaggia, P.-Y., Lazareff, M.: Optimization of the selective frequency damping parameters using model reduction. Phys. Fluids 27(9), 094103 (2015)CrossRefGoogle Scholar
  20. 20.
    Davey, A., Drazin, P.J.: The stability of Poiseuille flow in a pipe. J. Fluid Mech. 36, 209–218 (1969)CrossRefGoogle Scholar
  21. 21.
    Dijkstra, Henk A., Wubs, Fred W., Cliffe, Andrew K., Doedel, Eusebius, Dragomirescu, Ioana F., Eckhardt, Bruno, Gelfgat, Alexander Yu., Hazel, Andrew L., Lucarini, Valerio, Salinger, Andy G., et al.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15(1), 1–45 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 110(1), 82–102 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Farano, Mirko, Cherubini, Stefania, Robinet, Jean-Christophe, De Palma, Pietro: Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane poiseuille flow. Fluid Dyn. Res. 48(6), 061409 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Faure, T.M., Adrianos, P., Lusseyran, F., Pastur, L.: Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp. Fluids 42, 169–184 (2007)CrossRefGoogle Scholar
  25. 25.
    Faure, T.M., Pastur, L., Lusseyran, F., Fraigneau, Y., Bisch, D.: Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp. Fluids 47, 395–410 (2009)CrossRefGoogle Scholar
  26. 26.
    Fischer, P., Kruse, J., Mullen, J., Tufo, H., Lottes, J., Kerkemeier, S.: Open source spectral element CFD solver (2008).
  27. 27.
    Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. J. Fluid Mech. 748, 241–277 (2012)CrossRefGoogle Scholar
  28. 28.
    Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Localization of flow structures using \(\infty \)-norm optimization. J. Fluid Mech. 729, 672–701 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Foures, D.P.G., Caulfield, C.P., Schmid, P.J.: Variational framework for flow optimization using seminorm constraints. Phys. Rev. E 86(2), 026306 (2014)CrossRefGoogle Scholar
  30. 30.
    Gary, J., Helgason, R.: A matrix method for ordinary differential eigenvalue problems. J. Comput. Phys. 5, 169–187 (1970)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gaster, M., Jordinson, R.: On the eigenvalues of the Orr-Sommerfeld equation. J. Fluid Mech. 72, 121–133 (1975)CrossRefGoogle Scholar
  32. 32.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press (2012)Google Scholar
  33. 33.
    Hascoët, L., Pascual, V.: The Tapenade Automatic Differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. 39(3), 1–43 (2013)CrossRefGoogle Scholar
  34. 34.
    Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems, vol. 49. NBS Washington, DC (1952)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Hunt, R.E., Crighton, D.G.: Instability of Flows in Spatially Developing Media. In: Proceedings of the Royal Society of London A, vol. 435, pp. 109–128. The Royal Society (1991)CrossRefGoogle Scholar
  37. 37.
    Ilak, M., Schlatter, P., Bagheri, S., Henningson, D.S.: Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity ratio. J. Fluid Mech. 696, 94–121 (2012)CrossRefGoogle Scholar
  38. 38.
    Janovskỳ, V., Liberda, O.: Continuation of invariant subspaces via the recursive projection method. Appl. Math. 48(4), 241–255 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jordi, B.E., Cotter, C.J., Sherwin, S.J.: Encapsulated formulation of the selective frequency damping method. Phys. Fluids 26(3), 034101 (2014)CrossRefGoogle Scholar
  40. 40.
    Jordi, B.E., Cotter, C.J., Sherwin, S.J.: An adaptive selective frequency damping method. Phys. Fluids 27(9), 094104 (2015)CrossRefGoogle Scholar
  41. 41.
    Jordinson, R.: The flat plate boundary layer. Part 1. Numerical integration of the Orr-Sommerfeld equation. J. Fluid Mech. 43, 801–811 (1970)CrossRefGoogle Scholar
  42. 42.
    Jordinson, R.: Spectrum of eigenvalues of the Orr-Sommerfeld equation for blasius flow. Phys. Fluids 14, 2535 (1971)CrossRefGoogle Scholar
  43. 43.
    Karniadakis, G., Sherwin, S.: Spectral/HP Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)Google Scholar
  44. 44.
    Kerswell, R.R., Pringle, C.C.T., Willis, A.P.: An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 77(8), 085901 (2014)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Kerswell, R.R.: Nonlinear nonmodal stability theory. Ann. Rev. Fluid Mech. 50, 319–345 (2018)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. Sec. B 45, 255–282 (1950)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Landahl, M.T.: A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98(2), 243–251 (1980)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Loiseau, Jean-Christophe, Robinet, Jean-Christophe, Cherubini, Stefania, Leriche, Emmanuel: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Luchini, P., Bottaro, A.: Adjoint equations in stability analysis. Ann. Rev. Fluid Mech. 46, 493–517 (2014)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Mack, L.: Boundary layer stability theory. Technical report 900-277, Jet Propulsion Laboratory, Pasadena, 1969Google Scholar
  52. 52.
    Mack, L.: A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73, 497–520 (1976)CrossRefGoogle Scholar
  53. 53.
    Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376–413 (1990)CrossRefGoogle Scholar
  54. 54.
    Malik, M.R., Zang, T.A., Hussaini, M.Y.: A spectral collocation method for the Navier-Stokes equations. J. Comput. Phys. 61, 64–88 (1985)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Manneville, P.: Transition to turbulence in wall-bounded flows: where do we stand? Mech. Eng. Rev. 3(2), 15–00684 (2016)CrossRefGoogle Scholar
  56. 56.
    Monokrousos, A., Åkervik, E., Brandt, L., Henningson, D.S.: Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181–214 (2010)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Nayar, M., Ortega, U.: Computation of selected eigenvalues of generalized eigenvalues problems. J. Comput. Phys. 108, 8–14 (1993)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Orszag, S.A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 659–703 (1970)CrossRefGoogle Scholar
  59. 59.
    Pernice, M., Walker, H.F.: NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19(1), 302–318 (1998)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)CrossRefGoogle Scholar
  61. 61.
    Peyret, R., Taylor, T.: Computational Methods for Fluid Flows. Springer, New York (1983)CrossRefGoogle Scholar
  62. 62.
    Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D.: The temporally filtered navier-stokes equations: properties of the residual stress. Phys. Fluids 15(8), 2127–2140 (2003)CrossRefGoogle Scholar
  63. 63.
    Pruett, C.D., Thomas, B.C., Grosch, C.E., Gatski, T.B.: A temporal approximate deconvolution model for large-eddy simulation. Phys.Fluids 18(2), 028104 (2006)CrossRefGoogle Scholar
  64. 64.
    Yang, C., Lehoucq, R.B., Sorensen, D.C.: ARPACK user’s guide: Solution of large scale eigenvalue problems with implicitly restarted arnoldi methods. Technical Note, 1997Google Scholar
  65. 65.
    Rasthofer, U., Wermelinger, F., Hadijdoukas, P., Koumoutsakos, P.: Large scale simulation of cloud cavitation collapse. Procedia Comput. Sci. 108, 1763–1772 (2017)CrossRefGoogle Scholar
  66. 66.
    Renac, Florent: Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate eigenvalue problem. J. Comput. Phys. 230(14), 5739–5752 (2011)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Richez, F., Leguille, M., Marquet, O.: Selective frequency damping method for steady RANS solutions of turbulent separated flows around an airfoil at stall. Comput. Fluids 132(Supplement C), 51–61 (2016)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM (2003)Google Scholar
  69. 69.
    Schmid, P.J., Brandt, L.: Analysis of fluid systems: stability, receptivity, sensitivity. Lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66(2), 024803 (2014)CrossRefGoogle Scholar
  70. 70.
    Shaabani-Ardali, L., Sipp, D., Lesshafft, L.: Time-delayed feedback technique for suppressing instabilities in time-periodic flow. Phys. Rev. Fluids 2(11), 113904 (2017)CrossRefGoogle Scholar
  71. 71.
    Shroff, G.M., Keller, H.B.: Stabilization of unstable procedures: the recursive projection method. SIAM J. Numer. Anal. 30(4), 1099–1120 (1993)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358 (2007)CrossRefGoogle Scholar
  73. 73.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Stewarson, K., Stuart, J.T.: A non-linear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529–545 (1971)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol. 12, 3rd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  77. 77.
    Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39, 249–315 (2003)CrossRefGoogle Scholar
  78. 78.
    Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319352 (2011)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Tuckerman, L.S., Barkley, D.: Bifurcation analysis for timesteppers. In: Numerical Methods for Bifurcation Problems and Large-scale Dynamical Systems, pp. 453–466. Springer, Berlin (2000)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire DynFluidArts et Métiers ParisTechParisFrance
  2. 2.DMMM, Politecnico di BariBariItaly

Personalised recommendations