Skip to main content

Order-of-Magnitude Speedup for Steady States and Traveling Waves via Stokes Preconditioning in Channelflow and Openpipeflow

  • Chapter
  • First Online:
Book cover Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton’s method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier–Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10–50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuckerman, L.S.: Steady-state solving via Stokes preconditioning; recursion relations for elliptic operators. In: Voigt, R.G., Dwoyer, D.L., Hussaini, M.Y. (eds.) 11th International Conference on Numerical Methods in Fluid Dynamics, pp. 573–577. Springer, Berlin (1989)

    Chapter  Google Scholar 

  2. Mamun, C.K., Tuckerman, L.S.: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7, 80–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xin, S., Le Quéré, P., Daube, O.: Natural convection in a differentially heated horizontal cylinder: effects of Prandtl number on flow structure and instability. Phys. Fluids 9, 1014–1033 (1997)

    Article  Google Scholar 

  4. Xin, S., Le Quéré, P.: An extended Chebyshev pseudo-spectral benchmark for the 8:1 differentially heated cavity. Int. J. Numer. Methods Fluids 40, 981–998 (2002)

    Article  MATH  Google Scholar 

  5. Xin, S., Le Quéré, P.: Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances. Fluid Dyn. Res. 44, 031419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chénier, E., Delcarte, C., Labrosse, G.: Stability of the axisymmetric buoyant-capillary flows in a laterally heated liquid bridge. Phys. Fluids 11, 527–541 (1999)

    Article  MATH  Google Scholar 

  7. Mercader, I., Batiste, O., Ramírez-Piscina, L., Ruiz, X., Rüdiger, S., Casademunt, J.: Bifurcations and chaos in single-roll natural convection with low Prandtl number. Phys. Fluids 17, 104108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henry, D., BenHadid, H.: Multiple flow transitions in a box heated from the side in low-Prandtl-number fluids. Phys. Rev. E 76, 016314 (2007)

    Article  Google Scholar 

  9. Dridi, W., Henry, D., Ben Hadid, H.: Influence of acoustic streaming on the stability of a laterally heated three-dimensional cavity. Phys. Rev. E 77, 046311 (2008)

    Article  Google Scholar 

  10. Torres, J.F., Henry, D., Komiya, A., Maruyama, S., Ben Hadid, H.: Three-dimensional continuation study of convection in a tilted rectangular enclosure. Phys. Rev. E 88, 043015 (2013)

    Article  Google Scholar 

  11. Torres, J.F., Henry, D., Komiya, A., Maruyama, S.: Bifurcation analysis of steady natural convection in a tilted cubical cavity with adiabatic sidewalls. J. Fluid Mech. 756, 650–688 (2014)

    Article  Google Scholar 

  12. Torres, J.F., Henry, D., Komiya, A., Maruyama, S.: Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure. Phys. Rev. E 92, 023031 (2015)

    Article  Google Scholar 

  13. Touihri, R., BenHadid, H., Henry, D.: On the onset of convective instabilities in cylindrical cavities heated from below. I. Pure thermal case. Phys. Fluids 11, 2078–2088 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Touihri, R., El Gallaf, A., Henry, D., BenHadid, H.: Instabilities in a cylindrical cavity heated from below with a free surface. I. Effect of Biot and Marangoni numbers. Phys. Rev. E 84, 056302 (2011)

    Article  Google Scholar 

  15. Assemat, P., Bergeon, A., Knobloch, E.: Nonlinear Marangoni convection in circular and elliptical cylinders. Phys. Fluids 19, 104101 (2007)

    Article  MATH  Google Scholar 

  16. Marques, F., Mercader, I., Batiste, O., Lopez, J.M.: Centrifugal effects in rotating convection. J. Fluid Mech. 580, 303–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Borońska, K., Tuckerman, L.S.: Extreme multiplicity in cylindrical Rayleigh–Bénard convection. II. Bifurcation diagram and symmetry classification. Phys. Rev. E 81, 036321 (2010)

    Article  Google Scholar 

  18. Mercader, I., Sánchez, O., Batiste, O.: Secondary flows in a laterally heated horizontal cylinder. Phys. Fluids 26, 014104 (2014)

    Article  Google Scholar 

  19. Sánchez, O., Mercader, I., Batiste, O., Alonso, A.: Natural convection in a horizontal cylinder with axial rotation. Phys. Rev. E 93, 063113 (2016)

    Article  Google Scholar 

  20. Bergemann, K., Feudel, F., Tuckerman, L.S.: Geoflow: on symmetry-breaking bifurcations of heated spherical shell convection. J. Phys. Conf. Ser. 137, 012027 (2008). (IOP Publishing)

    Article  Google Scholar 

  21. Feudel, F., Bergemann, K., Tuckerman, L.S., Egbers, C., Futterer, B., Gellert, M., Hollerbach, R.: Convection patterns in a spherical fluid shell. Phys. Rev. E 83, 046304 (2011)

    Article  Google Scholar 

  22. Feudel, F., Seehafer, N., Tuckerman, L.S., Gellert, M.: Multistability in rotating spherical shell convection. Phys. Rev. E 87, 023021 (2013)

    Article  Google Scholar 

  23. Feudel, F., Tuckerman, L.S., Gellert, M., Seehafer, N.: Bifurcations of rotating waves in rotating spherical shell convection. Phys. Rev. E 92, 053015 (2015)

    Article  MathSciNet  Google Scholar 

  24. Feudel, F., Tuckerman, L.S., Zaks, M., Hollerbach, R.: Hysteresis of dynamos in rotating spherical shell convection. Phys. Rev. F 2, 053902 (2017)

    Google Scholar 

  25. Daube, O., Le Quéré, P.: Numerical investigation of the first bifurcation for the flow in a rotor-stator cavity of radial aspect ratio 10. Comput. Fluids 31, 481–494 (2002)

    Article  MATH  Google Scholar 

  26. Nore, C., Tuckerman, L.S., Daube, O., Xin, S.: The 1 [ratio] 2 mode interaction in exactly counter-rotating von kármán swirling flow. J. Fluid Mech. 477, 51–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nore, C., Tartar, M., Daube, O., Tuckerman, L.S.: Survey of instability thresholds of flow between exactly counter-rotating disks. J. Fluid Mech. 511, 45–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huepe, C., Metens, S., Dewel, G., Borckmans, P., Brachet, M.-E.: Decay rates in attractive Bose–Einstein condensates. Phys. Rev. Lett. 82, 1616 (1999)

    Article  Google Scholar 

  29. Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C.T., Tuckerman, L.S., Brachet, M.E.: Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res. 33, 509–544 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xin, S., Le Quéré, P., Tuckerman, L.S.: Bifurcation analysis of double-diffusive convection with opposing horizontal thermal and solutal gradients. Phys. Fluids 10, 850–858 (1998)

    Article  Google Scholar 

  31. Bergeon, A., Henry, D., Benhadid, H., Tuckerman, L.S.: Marangoni convection in binary mixtures with soret effect. J. Fluid Mech. 375, 143–177 (1998)

    Article  MATH  Google Scholar 

  32. Bergeon, A., Ghorayeb, K., Mojtabi, A.: Double diffusive instability in an inclined cavity. Phys. Fluids 11, 549–559 (1999)

    Article  MATH  Google Scholar 

  33. Bardan, G., Bergeon, A., Knobloch, E., Mojtabi, A.: Nonlinear doubly diffusive convection in vertical enclosures. Phys. D 138, 91–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bergeon, A., Knobloch, E.: Natural doubly diffusive convection in three-dimensional enclosures. Phys. Fluids 14, 3233–3250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bergeon, A., Mollaret, R., Henry, D.: Soret effect and slow mass diffusion as a catalyst for overstability in Marangoni–Bénard flows. Heat Mass Transf. 40, 105–114 (2003)

    Article  Google Scholar 

  36. Meca, E., Mercader, I., Batiste, O., Ramírez-Piscina, L.: Blue sky catastrophe in double-diffusive convection. Phys. Rev. Lett. 92, 234501 (2004)

    Article  MATH  Google Scholar 

  37. Meca, E., Mercader, I., Batiste, O., Ramírez-Piscina, L.: Complex dynamics in double-diffusive convection. Theor. Comput. Fluid Dyn. 18, 231–238 (2004)

    Article  MATH  Google Scholar 

  38. Mercader, I., Alonso, A., Batiste, O.: Numerical analysis of the Eckhaus instability in travelling-wave convection in binary mixtures. Eur. Phys. J. E 15, 311–318 (2004)

    Article  Google Scholar 

  39. Batiste, O., Alonso, A., Mercader, I.: Hydrodynamic stability of binary mixtures in Bénard and thermogravitational cells. J. Non-Equilib. Thermodyn. 29, 359–375 (2004)

    Article  MATH  Google Scholar 

  40. Alonso, A., Batiste, O., Mercader, I.: Numerical analysis of binary fluid convection in extended systems. J. Phys. Conf. Ser 14, 180 (2005). (IOP Publishing)

    Article  Google Scholar 

  41. Alonso, A., Batiste, O., Meseguer, A., Mercader, I.: Complex dynamical states in binary mixture convection with weak negative soret coupling. Phys. Rev. E 75, 026310 (2007)

    Article  MathSciNet  Google Scholar 

  42. Burke, J., Knobloch, E.: Localized states in the generalized Swift–Hohenberg equation. Phys. Rev. E 73, 056211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Champneys, A.R.: Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Phys. D 112, 158–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Coullet, P., Riera, C., Tresser, C.: Stable static localized structures in one dimension. Phys. Rev. Lett. 84, 3069 (2000)

    Article  Google Scholar 

  45. Fauve, S., Thual, O.: Solitary waves generated by subcritical instabilities in dissipative systems. Phys. Rev. Lett. 64, 282 (1990)

    Article  Google Scholar 

  46. Pomeau, Y.: Front motion, metastability and subcritical bifurcations in hydrodynamics. Phys. D 23, 3–11 (1986)

    Article  Google Scholar 

  47. Hilali, M.F., Métens, S., Borckmans, P., Dewel, G.: Pattern selection in the generalized Swift–Hohenberg model. Phys. Rev. E 51, 2046 (1995)

    Article  Google Scholar 

  48. Batiste, O., Knobloch, E., Alonso, A., Mercader, I.: Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149–158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Alonso, A., Batiste, O., Mercader, I.: Numerical simulations of binary fluid convection in large aspect ratio annular containers. Eur. Phys. J. Spec. Top. 146, 261–277 (2007)

    Article  Google Scholar 

  50. Bergeon, A., Knobloch, E.: Spatially localized states in natural doubly diffusive convection. Phys. Fluids 20, 034102 (2008)

    Article  MATH  Google Scholar 

  51. Bergeon, A., Knobloch, E.: Periodic and localized states in natural doubly diffusive convection. Phys. D 237, 1139–1150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Assemat, P., Bergeon, A., Knobloch, E.: Spatially localized states in Marangoni convection in binary mixtures. Fluid Dyn. Res. 40, 852–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. LoJacono, D., Bergeon, A., Knobloch, E.: Spatially localized binary fluid convection in a porous medium. Phys. Fluids 22, 909 (2010)

    Google Scholar 

  54. Beaume, C., Bergeon, A., Knobloch, E.: Homoclinic snaking of localized states in doubly diffusive convection. Phys. Fluids 23, 094102 (2011)

    Article  Google Scholar 

  55. Mercader, I., Batiste, O., Alonso, A., Knobloch, E.: Convectons, anticonvectons and multiconvectons in binary fluid convection. J. Fluid Mech. 667, 586–606 (2011)

    Article  MATH  Google Scholar 

  56. Beaume, C., Bergeon, A., Kao, H.-C., Knobloch, E.: Convectons in a rotating fluid layer. J. Fluid Mech. 717, 417–448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Beaume, C., Knobloch, E., Bergeon, A.: Nonsnaking doubly diffusive convectons and the twist instability. Phys. Fluids 25, 114102 (2013)

    Article  Google Scholar 

  58. Mercader, I., Batiste, O., Alonso, A., Knobloch, E.: Travelling convectons in binary fluid convection. J. Fluid Mech. 722, 240–266 (2013)

    Article  MATH  Google Scholar 

  59. LoJacono, D., Bergeon, A., Knobloch, E.: Spatially localized radiating diffusion flames. Combust. Flame 176, 117–124 (2017)

    Article  Google Scholar 

  60. LoJacono, D., Bergeon, A., Knobloch, E.: Localized traveling pulses in natural doubly diffusive convection. Phys. Rev. F 2, 093501 (2017)

    Google Scholar 

  61. LoJacono, D., Bergeon, A., Knobloch, E.: Complex convective structures in three-dimensional binary fluid convection in a porous medium. Fluid Dyn. Res. 49, 061402 (2017)

    Article  MathSciNet  Google Scholar 

  62. Nagata, M.: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519–527 (1990)

    Article  MathSciNet  Google Scholar 

  63. Waleffe, F.: Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 4140 (1998)

    Article  Google Scholar 

  64. Waleffe, F.: Exact coherent structures in channel flow. J. Fluid Mech. 435, 93–102 (2001)

    Article  MATH  Google Scholar 

  65. Waleffe, F.: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517–1534 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Clever, R.M., Busse, F.H.: Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nagata, M.: Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55, 2023 (1997)

    Article  Google Scholar 

  68. Faisst, H., Eckhardt, B.: Transition from the Couette–Taylor system to the plane Couette system. Phys. Rev. E 61, 7227 (2000)

    Article  Google Scholar 

  69. Schmiegel, A.: Transition to turbulence in linearly stable shear flows. Ph.D. thesis, Philipps-Universität Marburg (1999). http://archiv.ub.uni-marburg.de/diss/z2000/0062/

  70. Faisst, H., Eckhardt, B.: Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502 (2003)

    Article  Google Scholar 

  71. Wedin, H., Kerswell, R.R.: Exact coherent structures in pipe flow. J. Fluid Mech. 508, 333–371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  72. Cvitanović, P.: Periodic orbits as the skeleton of classical and quantum chaos. Phys. D 51, 138–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  73. Cvitanovic, P., Eckhardt, B.: Periodic orbit expansions for classical smooth flows. J. Phys. A Math. General 24, L237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kawahara, G., Kida, S.: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  75. Kawahara, G., Uhlmann, M., Van Veen, L.: The significance of simple invariant solutions in turbulent flows. Ann. Rev. Fluid Mech. 44, 203–225 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Dennis Jr., J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, vol. 16. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  77. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sánchez, J., Net, M., Garcıa-Archilla, B., Simó, C.: Newton–Krylov continuation of periodic orbits for Navier–Stokes flows. J. Comput. Phys. 201, 13–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  79. Viswanath, D.: Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Van Veen, L., Kawahara, G., Atsushi, M.: On matrix-free computation of 2D unstable manifolds. SIAM J. Sci. Comput. 33, 25–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Pringle, C.C.T., Kerswell, R.: Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99, 074502 (2007)

    Article  Google Scholar 

  82. Kerswell, R.R., Tutty, O.R.: Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. Duguet, Y., Willis, A.P., Kerswell, R.R.: Transition in pipe flow. J. Fluid Mech. 613, 255–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  84. Duguet, Y., Pringle, C.C.T., Kerswell, R.R.: Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102 (2008)

    Article  MATH  Google Scholar 

  85. Gibson, J.F., Halcrow, J., Cvitanović, P.: Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  86. Gibson, J.F., Halcrow, J., Cvitanović, P.: Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243–266 (2009)

    Article  MATH  Google Scholar 

  87. Pringle, C.C.T., Duguet, Y., Kerswell, R.R.: Highly symmetric travelling waves in pipe flow. Philos. Trans. R. Soc. Lond. A 367, 457–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Gibson, J.F.: Channelflow: a spectral Navier–Stokes simulator in C++. Technical report, University of New Hampshire (2014). www.Channelflow.org

  89. Willis, A.P.: The openpipeflow Navier–Stokes solver. SoftwareX 6, 124–127 (2017)

    Article  Google Scholar 

  90. Schneider, T.M., Gibson, J.F., Burke, J.: Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501 (2010)

    Article  Google Scholar 

  91. Avila, M., Mellibovsky, F., Roland, N., Hof, B.: Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502 (2013)

    Article  Google Scholar 

  92. Gibson, J.F., Brand, E.: Spanwise-localized solutions of planar shear flows. J. Fluid Mech. 745, 25–61 (2014)

    Article  MathSciNet  Google Scholar 

  93. Brand, E., Gibson, J.F.: A doubly localized equilibrium solution of plane Couette flow. J. Fluid Mech. 750 (2014)

    Google Scholar 

  94. Eckhardt, B.: Doubly localized states in plane Couette flow. J. Fluid Mech. 758, 1–4 (2014)

    Article  Google Scholar 

  95. Chantry, M., Willis, A.P., Kerswell, R.R.: Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett. 112, 164501 (2014)

    Article  Google Scholar 

  96. Mellibovsky, F., Eckhardt, B.: Takens-Bogdanov bifurcation of travelling-wave solutions in pipe flow. J. Fluid. Mech. 670, 96–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  97. Beaume, C., Chini, G.P., Julien, K., Knobloch, E.: Reduced description of exact coherent states in parallel shear flows. Phys. Rev. E 91, 043010 (2015)

    Article  Google Scholar 

  98. Beaume, C., Knobloch, E., Chini, G.P., Julien, K.: Modulated patterns in a reduced model of a transitional shear flow. Phys. Scr. 91, 024003 (2016)

    Article  Google Scholar 

  99. Wang, J., Gibson, J., Waleffe, F.: Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501 (2007)

    Article  Google Scholar 

  100. Blackburn, H.M., Hall, P., Sherwin, S.J.: Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech. 726 (2013)

    Google Scholar 

  101. Deguchi, K., Hall, P.: The high-Reynolds-number asymptotic development of nonlinear equilibrium states in plane Couette flow. J. Fluid Mech. 750, 99–112 (2014)

    Article  MathSciNet  Google Scholar 

  102. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  103. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  104. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numerische Mathematik 6, 185–199 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  105. Dale, B., Haidvogel, D.B., Zang, T.: The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30, 167–180 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  106. Vitoshkin, H., Gelfgat, A.Yu.: On direct and semi-direct inverse of Stokes, Helmholtz and Laplacian operators in view of time-stepper-based Newton and Arnoldi solvers in incompressible CFD. Commun. Comput. Phys. 14, 1103–1119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  107. Shi, L., Avila, M., Hof, B.: Scale invariance at the onset of turbulence in Couette flow. Phys. Rev. Lett. 110, 204502 (2013)

    Article  Google Scholar 

  108. Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333, 192–196 (2011)

    Article  Google Scholar 

  109. Beaume, C.: Adaptive Stokes preconditioning for steady incompressible flows. Commun. Comput. Phys. 22, 494–516 (2017)

    Article  MathSciNet  Google Scholar 

  110. Brynjell-Rahkola, M., Tuckerman, L.S., Schlatter, P., Henningson, D.S.: Computing optimal forcing using Laplace preconditioning. Commun. Comput. Phys. 22, 1508–1532 (2017)

    Article  MathSciNet  Google Scholar 

  111. Fischer, P.: Nek5000. https://nek5000.mcs.anl.gov, Argonne National Laboratory, IL

  112. Tuckerman, L.S.: Laplacian preconditioning for the inverse Arnoldi method. Commun. Comput. Phys. 18, 1336–1351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  113. Barkley, D., Tuckerman, L.S.: Stokes preconditioning for the inverse power method. In: Chattot, J.-J., Kutler, P., Flores, J. (eds.) 15th International Conference on Numerical Methods in Fluid Dynamics, pp. 75–76. Springer, Berlin (1997)

    Google Scholar 

  114. Tuckerman, L.S., Barkley, D.: Bifurcation analysis for timesteppers. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, pp. 453–466. Springer, Berlin (2000)

    Chapter  MATH  Google Scholar 

  115. Huepe, C., Tuckerman, L.S., Métens, S., Brachet, M.-E.: Stability and decay rates of nonisotropic attractive Bose–Einstein condensates. Phys. Rev. A 68, 023609 (2003)

    Article  Google Scholar 

  116. Gutknecht, M.H.: Variants of BiCGStab for matrices with complex spectrum. SIAM J. Sci. Comput. 14, 1020–1033 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  117. Sleijpen, G.L.G., Fokkema, D.R.: BiCGstab for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1, 2000 (1993)

    MathSciNet  MATH  Google Scholar 

  118. Sonneveld, P., Van Gijzen, M.B.: IDR: a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31, 1035–1062 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dwight Barkley and John Gibson for their contributions. We acknowledge the support of TRANSFLOW, provided by the Agence Nationale de la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurette S. Tuckerman .

Editor information

Editors and Affiliations

Appendix

Appendix

This Appendix presents samples in Figs. 9, 10, 11 and 12 of previous computations carried out by Stokes preconditioning.

Fig. 9
figure 9

From Borońska and Tuckerman [17]

Rayleigh–Bénard convection in a cylinder of aspect ratio with radius / height \(=2\), \(Pr=6.7\) and insulating lateral boundaries. Left: Bifurcation diagram shows 17 branches of steady states, with azimuthal symmetries \(m=2\) (pizza, four-roll), \(m=0\) (two-tori, torus), \(m=3\) (marigold, Mitsubishi, cloverleaf, Mercedes), \(m=1\) (dipole, three-roll, tiger, asymmetric three-roll). Right: Partial schematic diagram showing branches with \(m=3\) symmetry. Transition from conductive state to marigold and then Mitsubishi branches occur via circle and ordinary pitchfork bifurcations, respectively, and to cloverleaf and Mercedes branches via two successive saddle-node bifurcations. The only stable states are on a portion of the Mercedes branch, shown by the thick curve. The results are from a pseudospectral simulation with \((M_r,M_\theta ,M_z)=(60,130,30)\).

Fig. 10
figure 10

From Mercader, Batiste, Alonso and Knobloch [55]

Binary fluid convection in a domain with aspect ratio width / height \(= 14\), Neumann boundary conditions, Prandtl and Lewis numbers \(Pr=7\), \(Le=0.01\) and separation ratio \(S=-0.1\). Left: Partial bifurcation diagram showing two-pulse point-symmetric states based on 15 rolls. Right: Temperature and concentration fields for the three solutions indicated as dots on the bifurcation diagram.

Fig. 11
figure 11

From LoJacono, Bergeon and Knobloch [61]

Three-dimensional binary fluid convection in a porous medium of size \(6\times 6 \times 1\). Left: bifurcation diagram. Right: vertical velocity at mid-layer. The transition from a four-armed structure with arms oriented along the diagonals (panels c and d, black curve) to an eight-armed structure with arms oriented along both the diagonals and the principal axes of the domain (panel a, orange curve) via a target pattern (panel b). Simulations use a spectral element method with 6 elements in the quarter domain, each with (23, 23, 17) points.

Fig. 12
figure 12

From Beaume, Chini, Julien and Knobloch [97, 109]

Steady states of a streamwise-independent reduced model for plane Couette flow. Bifurcation diagram on left. Representative states from lower (middle) and upper (right) branches at \(Re\approx 1000\). Colored contours show the streamfunction of streamwise rolls, while the black curves show contours of the streamwise velocity.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuckerman, L.S., Langham, J., Willis, A. (2019). Order-of-Magnitude Speedup for Steady States and Traveling Waves via Stokes Preconditioning in Channelflow and Openpipeflow. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics