Numerical Bifurcation Analysis of Marine Ice Sheet Models

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 50)


The climate variability associated with the Pleistocene Ice Ages is one of the most fascinating puzzles in the Earth Sciences still awaiting a satisfactory explanation. In particular, the explanation of the dominant 100 kyr period of the glacial cycles over the last million years is a long-standing problem. Based on bifurcation analyses of low-order models, many theories have been suggested to explain these cycles and their frequency. The new aspect in this contribution is that, for the first time, numerical bifurcation analysis is applied to a two-dimensional marine ice sheet model with a dynamic grounding line. In this model, we find Hopf bifurcations with an oscillation period of about 100 kyr which may be relevant to glacial cycles.


Marine ice sheets Bifurcation analysis Multiple equilibria Oscillatory modes 



TEM and HAD acknowledge support by the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW), Grant no. 024.002.001. FWW acknowledge support from the Mathematics of Planet Earth research program, project number 657.000.007, which is financed by the Netherlands Organisation for Scientific Research (NWO).


  1. 1.
    Lisiecki, L.E., Raymo, M.: Paleoceanography 20(1), PA1003 (2005)CrossRefGoogle Scholar
  2. 2.
    Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., Wolff, E.W.: Science 317(5839), 793 (2007)CrossRefGoogle Scholar
  3. 3.
    Imbrie, J., Imbrie, K.P.: Ice Ages: Solving the Mystery, 2nd edn. Harvard University Press, Cambridge (1986)Google Scholar
  4. 4.
    Milankovitch, M.: Handbuch der Klimatologie, Koppen, W., Geiger, R. (eds.). Borntraeger, Berlin (1930)Google Scholar
  5. 5.
    Raymo, M.E., Huybers, P.: Nature 451(7176), 284 (2008)CrossRefGoogle Scholar
  6. 6.
    Ghil, M.: Physica D-Nonlinear Phenomena 77, 130 (1994)CrossRefGoogle Scholar
  7. 7.
    Paillard, D.: Nature 391(6665), 378 (1998)CrossRefGoogle Scholar
  8. 8.
    Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Tellus 34, 10 (1982)CrossRefGoogle Scholar
  9. 9.
    Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: SIAM J. Appl. Math. 43, 565 (1983)CrossRefGoogle Scholar
  10. 10.
    Nicolis, C.: Tellus 34(1), 1 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghil, M., Childress, S.: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Springer, Berlin (1987)CrossRefGoogle Scholar
  12. 12.
    Le Treut, H., Portes, J., Jouzel, J., Ghil, M.: J. Geophys. Res. 93, 9365 (1988)CrossRefGoogle Scholar
  13. 13.
    Ghil, M., Le Treut, H.: J. Geophys. Res. 86, 5262 (1981)CrossRefGoogle Scholar
  14. 14.
    Saltzmann, B.: Dynamical Paleoclimatology. Academic Press, Cambridge (2001)Google Scholar
  15. 15.
    Paillard, D., Parrenin, F.: Earth Planet. Sci. Lett. 227(3), 263 (2004)CrossRefGoogle Scholar
  16. 16.
    Omta, A.W., van Voorn, G.A.K., Rickaby, R.E.M., Follows, M.J.: Glob. Biogeochem. Cycles 27(3), 692 (2013).
  17. 17.
    Crucifix, M.: Philosophical transactions of the royal society a. Math. Phys. Eng. Sci. 370(1962), 1140 (2012)CrossRefGoogle Scholar
  18. 18.
    Gildor, H., Tziperman, E.: Paleoceanography 15, 605 (2000)CrossRefGoogle Scholar
  19. 19.
    Gildor, H., Tziperman, E.: J. Geophys. Res. 106, 9117 (2001)CrossRefGoogle Scholar
  20. 20.
    Tziperman, E., Raymo, M.E., Huybers, P., Wunsch, C.: Paleoceanography 21(4), PA4206 (2006)Google Scholar
  21. 21.
    Crucifix, M. Lenoir, G., Mitsui, T.: Nonlinear and Stochastic Climate Dynamics, Franzke, C., O’Kane, T.J. (eds.), pp. 5–20. Cambridge University Press, Cambridge (2016)Google Scholar
  22. 22.
    Greve, R., Blatter, H.: Dynamics of Ice Sheets and Glaciers. Springer, Berlin (2009)CrossRefGoogle Scholar
  23. 23.
    Van der Veen, C.J.: Fundamentals of Glacier Dynamics. CRC Press, Boca Raton (2013)Google Scholar
  24. 24.
    Schoof, C.: J. Geophys, Res. 112(F3) (2007).
  25. 25.
    Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R.C.A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G.H., Lee, V., Nick, F.M., Payne, A.J., Pollard, D., Rybak, O., Saito, F., Vieli, A.: The cryosphere discussions 6(1), 267 (2012). Scholar
  26. 26.
    Vieli, A., Payne, A.J.: J. Geophys. Res. Earth Surf. 110(F1) (2005).
  27. 27.
    Dijkstra, H.A.: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, vol. 28. Springer, Berlin (2005)Google Scholar
  28. 28.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 3rd edn. (Springer, New York, 2004). Scholar
  29. 29.
    Schoof, C.: J. Fluid Mech. 698, 62 (2012). Scholar
  30. 30.
    Van den Berg, J., Van de Wal, R., Oerlemans, J.: J. Glaciol. 52(176), 89 (2006). Scholar
  31. 31.
    Ghil, M.: Physica D: Nonlinear Phenomena 77, 130 (1994)CrossRefGoogle Scholar
  32. 32.
    Dijkstra, H.A., Burgers, G.: Ann. Rev. Fluid Mech. 34, 531 (2002)CrossRefGoogle Scholar
  33. 33.
    Frankcombe, L.M., von der Heydt, A., Dijkstra, H.A.: J. Clim. 23(13), 3626 (2010). Scholar
  34. 34.
    Dijkstra, H.A.: Nonlinear Climate Dynamics. Cambridge University Press, Cambridge (2013)Google Scholar
  35. 35.
    Mulder, T., Baars, S., Wubs, F., Dijkstra, H.: Stochastic marine ice sheet variability. J. Fluid Mech. 843, 748–777. Scholar
  36. 36.
    Hogg, A.E., Shepherd, A., Gourmelen, N., Engdahl, M.: J. Glaciol. 62(236), 1104 (2016)CrossRefGoogle Scholar
  37. 37.
    De Niet, A.C., Wubs, F., Terwisscha van Scheltinga, A.D., Dijkstra, H.A.: J. Comput. Phys. 277, 654 (2007)CrossRefGoogle Scholar
  38. 38.
    Thies, J., Wubs, F., Dijkstra, H.A.: Ocean Model. 30(4), 287 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsInstitute for Marine and Atmospheric research Utrecht, Utrecht UniversityUtrechtThe Netherlands
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceGroningen UniversityGroningenThe Netherlands

Personalised recommendations