Butz, M.V., Lönneker, T.D.: Optimized sensory-motor couplings plus strategy extensions for the TORCS car racing challenge. In: Lanzi, P.L. (ed.) Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, Milano, Italy, 7–10 September 2009, pp. 317–324. IEEE (2009)
Google Scholar
Cardamone, L., Loiacono, D., Lanzi, P.L.: On-line neuroevolution applied to the open racing car simulator. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 2622–2629. IEEE Press, Piscataway (2009)
Google Scholar
Elsayed, S.M.M., Sarker, R., Essam, D.L.: A genetic algorithm for solving the CEC 2013 competition problems on real-parameter optimization. In: IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, 21–23 June 2013, pp. 356–360 (2013)
Google Scholar
Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biol. Cybern. 90, 218–228 (2004). https://doi.org/10.1007/s00422-004-0467-5
CrossRef
MATH
Google Scholar
Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison Wesley, Reading (1989)
Google Scholar
Guadarrama, S., Vazquez, R.: Tuning a fuzzy racing car by coevolution. In: Genetic and Evolving Systems, GEFS 2008. IEEE, March 2008. https://doi.org/10.1109/GEFS.2008.4484568
Herrera, F., Lozano, M., Verdegay, J.: Automatic track generation for high-end racing games using evolutionary computation. Artif. Intell. Rev. 12(4), 265–319 (1998)
CrossRef
Google Scholar
Iancu, I.: A Mamdani Type Fuzzy Logic Controller, pp. 325–352. InTech (2012)
Google Scholar
Kim, T.S., Na, J.C., Kim, K.J.: Optimization of an autonomous car controller using a self-adaptive evolutionary strategy. Int. J. Adv. Robot. Syst. 9(3), 73 (2012)
CrossRef
Google Scholar
Kolski, S., Ferguson, D., Stacniss, C., Siegwart, R.: Autonomous driving in dynamic environments. In: Proceedings of the Workshop on Safe Navigation in Open and Dynamic Environments at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China (2006)
Google Scholar
Koutnik, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large scale neural networks for vision based TORCS. In: Foundations of Digital Games. J. Koutnik, Dipartimento tecnologie innovative Istituto Dalle Molle di studi sull’intelligenza artificiale, March 2013. http://repository.supsi.ch/id/eprint/4548
Liébana, D.P., Recio, G., Sáez, Y., Isasi, P.: Evolving a fuzzy controller for a car racing competition. In: Lanzi, P.L. (ed.) Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, Milano, Italy, 7–10 September 2009, pp. 263–270. IEEE (2009). https://doi.org/10.1109/CIG.2009.5286467
Loiacono, D., Cardamone, L., Butz, M., Lanzi, P.L.: The 2011 simulated car racing championship @ cig-2011. TORCS news (2011). http://cig.dei.polimi.it/wpcontent/
Loiacono, D., Lanzi, P.L., Bardelli, A.P.: Searching for the optimal racing line using genetic algorithms. In: 2010 IEEE Proceedings of the Symposium on Computational Intelligence and Games (CIG). IEEE Press, Copenhagen (2010). https://doi.org/10.1109/ITW.2010.5593330
Neubauer, A.: A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm. In: Proceedings of the IEEE International Conference on Evolutionary Computation. IEEE Press, Indianapolis (1997). https://doi.org/10.1109/ICEC.1997.592275
Onieva, E., Alonso, J., Perez, J., Milanés, V.: Autonomous car fuzzy control modeled by iterative genetic algorithms. In: Fuzzy Systems, pp. 1615–1620 (2009). https://doi.org/10.1109/FUZZY.2009.5277397
Onieva, E., Pelta, D., Godoy, J., Milanés, V., Rastelli, J.: An evolutionary tuned driving system for virtual car racing games: the autopia driver. Int. J. Intell. Syst. 27, 217–241 (2012). https://doi.org/10.1002/int.21512
CrossRef
Google Scholar
Saez, Y., Perez, D., Sanjuan, O., Isasi, P.: Driving cars by means of genetic algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1101–1110. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_109
CrossRef
Google Scholar
Salem, M., Mora, A.M., Merelo, J.J., García-Sánchez, P.: Driving in TORCS using modular fuzzy controllers. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 361–376. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_24
CrossRef
Google Scholar
SeongKim, T., Na, J.C., Kim, K.J.: Optimization of an autonomous car controller using a self-adaptive evolutionary strategy. Int. J. Adv. Robot. Syst. 9(3), 73 (2012)
CrossRef
Google Scholar
Sourceforge: Web TORCS. Web, November 2016. http://torcs.sourceforge.net/
Tan, C.H., Ang, J.H., Tan, K.C., Tay, A.: Online adaptive controller for simulated car racing. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, 1–6 June 2008, Hong Kong, China, pp. 2239–2245. IEEE (2008). https://doi.org/10.1109/CEC.2008.4631096
Varun Kumar, S.G., Panneerselvam, R.: A study of crossover operators for genetic algorithms to solve VRP and its variants and new sinusoidal motion crossover operator. Int. J. Comput. Intell. Res. 13(7), 1717–1733 (2017)
Google Scholar