Skip to main content

Connecting Systems of Mathematical Fuzzy Logic with Fuzzy Concept Lattices

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (IPMU 2018)

Abstract

In this paper our aim is to explore a new look at formal systems of fuzzy logics using the framework of (fuzzy) formal concept analysis (FCA). Let L be an extension of MTL complete with respect to a given L-chain. We investigate two possible approaches. The first one is to consider fuzzy formal contexts arising from L where attributes are identified with L-formulas and objects with L-evaluations: every L-evaluation (object) satisfies a formula (attribute) to a given degree, and vice-versa. The corresponding fuzzy concept lattices are shown to be isomorphic to quotients of the Lindenbaum algebra of L. The second one, following an idea in a previous paper by two of the authors for the particular case of Gödel fuzzy logic, is to use a result by Ganter and Wille in order to interpret the (lattice reduct of the) Lindenbaum algebra of L-formulas as a (classical) concept lattice of a given context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MTL algebras are commutative integral bounded residuated lattices satisfying prelinearity [9].

  2. 2.

    We use \(\varphi ^2\) as a shorcut for \(\varphi \odot \varphi \).

References

  1. Aguzzoli, S., Bova, S., Gerla, B.: Free algebras and functional representation. In: Cintula, P., Háajek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic. Studies in Logic, vol. 38, chap. IX, pp. 713–791. College Publications, London (2011)

    Google Scholar 

  2. Bělohlávek, R.: Fuzzy concepts and conceptual structures: induced similarities. In: Proceedings of Joint Conference on Information Sciences, Durham, vol. 1, pp. 179–182 (1998)

    Google Scholar 

  3. Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32262-7_19

    Chapter  MATH  Google Scholar 

  4. Bou, F., Esteva, F., Font, J.M., Gil, À.J., Godo, L., Torrens, A., Verd, V.: Logics preserving degrees of truth from varieties of residuated lattices. J. Logic Comput. 19(6), 1031–1069 (2009)

    Article  MathSciNet  Google Scholar 

  5. Codara, P., Valota, D.: On Gödel algebras of concepts. In: Hansen, H.H., Murray, S.E., Sadrzadeh, M., Zeevat, H. (eds.) TbiLLC 2015. LNCS, vol. 10148, pp. 251–262. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54332-0_14

    Chapter  Google Scholar 

  6. Dutta, S., Esteva, F., Godo, L.: On a three-valued logic to reason with prototypes and counterexamples and a similarity-based generalization. In: Luaces, O., Gámez, J.A., Barrenechea, E., Troncoso, A., Galar, M., Quintián, H., Corchado, E. (eds.) CAEPIA 2016. LNCS (LNAI), vol. 9868, pp. 498–508. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44636-3_47

    Chapter  Google Scholar 

  7. Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001)

    Article  MathSciNet  Google Scholar 

  8. Ferré, S., Ridoux, O.: A logical generalizationof formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS-ConceptStruct 2000. LNCS (LNAI), vol. 1867, pp. 371–384. Springer, Heidelberg (2000). https://doi.org/10.1007/10722280_26

    Chapter  MATH  Google Scholar 

  9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, New York (2007)

    MATH  Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer, New York (1997). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  11. Gerla, G.: Mathematical Tools for Approximate Reasoning. Kluwer Academic Press, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9660-2

    Book  MATH  Google Scholar 

  12. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3

    Book  MATH  Google Scholar 

  13. Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Stud. Logica. 70(2), 183–192 (2002)

    Article  MathSciNet  Google Scholar 

  14. Pollandt, S.: Fuzzy-Begriffe. Formale Begriffsanalyse unscharfer Daten. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-60460-7

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the anonymous reviewers for their helpful comments. Pietro Codara is supported by the INdAM-Marie Curie Cofund project LaVague (FP7-PEOPLE-2012-COFUND 600198). Francesc Esteva and Lluis Godo acknowledge partial support by the FEDER/MINECO project TIN2015-71799- C2-1-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluis Godo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Codara, P., Esteva, F., Godo, L., Valota, D. (2018). Connecting Systems of Mathematical Fuzzy Logic with Fuzzy Concept Lattices. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics