Skip to main content

Interval Type-2 Intuitionistic Fuzzy Logic Systems - A Comparative Evaluation

Part of the Communications in Computer and Information Science book series (CCIS,volume 853)

Abstract

Several fuzzy modeling techniques have been employed for handling uncertainties in data. This study presents a comparative evaluation of a new class of interval type-2 fuzzy logic system (IT2FLS) namely: interval type-2 intuitionistic fuzzy logic system (IT2IFLS) of Takagi-Sugeno-Kang (TSK)-type with classical IT2FLS and its type-1 variant (IFLS). Simulations are conducted using a real-world gas compression system (GCS) dataset. Study shows that the performance of the proposed framework with membership functions (MFs) and non-membership functions (NMFs) that are each intervals is superior to classical IT2FLS with only MFs (upper and lower) and IFLS with MFs and NMFs that are not intervals in this problem domain.

Keywords

  • Interval type-2 intuitionistic fuzzy logic systems
  • Membership functions
  • Non-membership functions
  • Decoupled extended Kalman filter

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91473-2_58
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-91473-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    CrossRef  Google Scholar 

  2. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)

    CrossRef  MathSciNet  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    CrossRef  Google Scholar 

  4. Hájek, P., Olej, V.: Intuitionistic fuzzy neural network: the case of credit scoring using text information. In: Iliadis, L., Jayne, C. (eds.) EANN 2015. CCIS, vol. 517, pp. 337–346. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23983-5_31

    CrossRef  Google Scholar 

  5. Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29127-2

    CrossRef  MATH  Google Scholar 

  6. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    CrossRef  Google Scholar 

  7. Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    CrossRef  Google Scholar 

  8. Nguyen, D.D., Ngo, L.T., Pham, L.T.: Interval type-2 fuzzy c-means clustering using intuitionistic fuzzy sets. In: IEEE Third World Congress on Information and Communication Technologies (WICT), pp. 299–304 (2013)

    Google Scholar 

  9. Naim, S., Hagras, H.: A hybrid approach for multi-criteria group decision making based on interval type-2 fuzzy logic and intuitionistic fuzzy evaluation. In: 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2012)

    Google Scholar 

  10. Naim, S., Hagras, H.: A type 2-hesitation fuzzy logic based multi-criteria group decision making system for intelligent shared environments. Soft. Comput. 18(7), 1305–1319 (2014)

    CrossRef  Google Scholar 

  11. Naim, S., Hagras, H., Bilgin, A.: Employing an interval type-2 fuzzy logic and hesitation index in a multi criteria group decision making system for lighting level selection in an intelligent environment. In: 2013 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), pp. 1–8. IEEE (2013)

    Google Scholar 

  12. Eyoh, I., John, R., De Maere, G.: Interval type-2 intuitionistic fuzzy logic system for non-linear system prediction. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 001063–001068. IEEE (2016)

    Google Scholar 

  13. Eyoh, I., John, R., De Maere, G.: Time series forecasting with interval type-2 intuitionistic fuzzy logic systems. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6, July 2017

    Google Scholar 

  14. Eyoh, I., John, R., De Maere, G.: Extended Kalman filter-based learning of interval type-2 intuitionistic fuzzy logic system. In: 2017 IEEE International Conference on Systems, Man and Cybernetics, pp. 728–733 (2017)

    Google Scholar 

  15. Simon, D.: Training fuzzy systems with the extended Kalman filter. Fuzzy Sets Syst. 132(2), 189–199 (2002)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research work was supported by the Government of Nigeria under the Tertiary Education Trust Fund (TETFund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imo Eyoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Eyoh, I., John, R., De Maere, G. (2018). Interval Type-2 Intuitionistic Fuzzy Logic Systems - A Comparative Evaluation. In: , et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91473-2_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91472-5

  • Online ISBN: 978-3-319-91473-2

  • eBook Packages: Computer ScienceComputer Science (R0)