Skip to main content

Time-Based Trajectory Data Partitioning for Efficient Range Query

  • Conference paper
  • First Online:
Book cover Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10829))

Included in the following conference series:

Abstract

The popularity of mobile terminals has given rise to an extremely large number of trajectories of moving objects. As a result, it is critical to provide effective and efficient query operations on large-scale trajectory data for further retrieval and analysis. Considering data partition has a great influence on processing large-scale data, we present a time-based partitioning technique on trajectory data. This partitioning technique can be applied on the distributed framework to improve the performance of range queries on massive trajectory data. Furthermore, the proposed method adopts time-based hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.; T-drive:driving directions based on taxi trajectories. In: Proceedings SIGSPATIAL, pp. 99–108 (2010)

    Google Scholar 

  2. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 41 (2015). Article 29

    Article  Google Scholar 

  3. Xiao, X., Zheng, Y., Luo, Q., Xie, X.: Inferring social ties between users with human location history. J. Ambient Intell. Hum. Comput. 5(1), 3–19 (2014)

    Article  Google Scholar 

  4. Bao, J., He, T., Ruan, S., Li, Y., Zheng, Y.: Planning bike lanes based on sharing-bikes’ trajectories. In: Proceedings SIGKDD, pp. 1377–1386 (2017)

    Google Scholar 

  5. Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  6. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings NSDI, pp. 15–28 (2012)

    Google Scholar 

  7. Lange, R., Drr, F., Rothermel, K.; Scalable processing of trajectory-based queries in space-partitioned moving objects databases. In: Proceedings SIGSPATIAL, 10 p. (2008). Article 31

    Google Scholar 

  8. Ma, Q., Yang, B., Qian, W., Zhou, A.: Query processing of massive trajectory data based on mapreduce. In: Proceedings CIKM, pp. 9–16 (20090

    Google Scholar 

  9. Tan, H., Luo, W., Ni, L.M.: CIoST: a Hadoop-based storage system for big spatio-temporal data analytics. In: Proceedings CIKM, pp. 2139–2143 (2012)

    Google Scholar 

  10. Wang, H., Zheng, K., Zhou, X., Sadiq, S.W.: SharkDB: an in-memory storage for massive trajectory data. In: Proceedings SIGMOD, pp. 1099–1104 (2015)

    Google Scholar 

  11. Nishimura, S., Das, S., Agrawal, D., Abbadi, A.E.: MD-hbase: design and implementation of an elastic data infrastructure for cloud-scale location services. Distrib. Parallel Databases 31(2), 289–319 (2013)

    Article  Google Scholar 

  12. Tang, M., Yu, Y., Malluhi, Q.M., Ouzzani, M., Aref, W.G.: Locationspark: a distributed in-memory data management system for big spatial data. Proc. VLDB 9(13), 1565–1568 (2016)

    Article  Google Scholar 

  13. You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query processing in cloud. In: Proceedings ICDE Workshops, pp. 34–41 (2015)

    Google Scholar 

  14. Yu, J., Wu, J., Sarwat, M.: Geospark: a cluster computing framework for processing large-scale spatial data. In: Proceedings SIGSPATIAL, 4 p. (2015). Articles 70

    Google Scholar 

  15. Zhang, Z.G., Jin, C.Q., Miao, J.L., Yang, X.L., Zhou, A.Y.: TrajSpark: a scalable and efficient in-memory management system for big trajectory data. In: Proceedings APWeb-WAIM, Part I, pp. 11–26 (2017)

    Google Scholar 

  16. Xie, D., Li, F.F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spatial analytics. In: Proceedings SIGMOD, pp. 1071–1085 (2016)

    Google Scholar 

  17. Xie, D., Li, F., Phillips, J.M.: Distributed trajectory similarity search. Proc. VLDB 10(11), 1478–1489 (2017)

    Article  Google Scholar 

  18. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  19. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  20. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974)

    Article  Google Scholar 

  21. Leutenegger, S.T., Lopez, M., Edgington, J. et al.: STR: a simple and efficient algorithm for r-tree packing. In: Proceedings ICDE, pp. 497–506 (1997)

    Google Scholar 

  22. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in spatial Hadoop. Proc. VLDB 8(12), 1602–1605 (2015)

    Article  Google Scholar 

  23. Zheng, Y., Zhang, L.Z., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings World Wild Web, pp. 791–800 (2009)

    Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (No. 61462017, 61363005, U1501252), Guangxi Natural Science Foundation of China (No. 2017GXNSFAA198035), and Guangxi Cooperative Innovation Center of Cloud Computing and Big Data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, Z., Zhang, J., Zhang, H., Yang, Q. (2018). Time-Based Trajectory Data Partitioning for Efficient Range Query. In: Liu, C., Zou, L., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10829. Springer, Cham. https://doi.org/10.1007/978-3-319-91455-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91455-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91454-1

  • Online ISBN: 978-3-319-91455-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics