Advertisement

Interpreting Fine-Grained Categories from Natural Language Queries of Entity Search

  • Denghao Ma
  • Yueguo Chen
  • Xiaoyong Du
  • Yuanzhe Hao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

The fine-grained target categories/types are very critical for improving the performance of entity search because they can be used for retrieving relevant entities by filtering irrelevant entities with a high confidence. However, most solutions of entity search face an urgent problem, i.e., the lack of fine-grained target categories of queries, which are hard for users to explicitly specify. In this paper, we try to interpret fine-grained categories from natural language based queries of entity search. We observe that entity search queries often contain terms specifying the contexts of the desired entities, as well as a topic of the desired entities. Accordingly, we propose to interpret fine-grained categories of entity search queries from the context perspective and the topic perspective. Therefore, we propose an approach by formalizing both context-based category model and topic-based category model, to tackle the category interpreting task. Extensive experiments on two widely-used test sets: INEX-XER 2009 and SemSearch-LS, indicate significant performance improvement achieved by our proposed method over the state-of-the-art baselines.

Keywords

Entity search Fine-grained category Type interpretation 

Notes

Acknowledgments

Yueguo Chen is supported by the National Science Foundation of China under grants No. U1711261, 61472426, 61432006, and the State Visiting Scholar Funds from the China Scholarship Council under Grant Number 201706365018. Denghao Ma is supported by the Outstanding Innovative Talents Cultivation Funded Programs 2017 of Renmin University of China and the State Scholarship Fund from China Scholarship Council under Grant Number 201706360309.

References

  1. 1.
    Chen, Y., Gao, L., Shi, S., Du, X., Wen, J.: Improving context and category matching for entity search. In: AAAI, pp. 16–22 (2014)Google Scholar
  2. 2.
    Balog, K., Bron, M., Rijke, R.: Query modeling for entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29(4), 22 (2011)CrossRefGoogle Scholar
  3. 3.
    de Vries, A.P., Vercoustre, A.-M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the INEX 2007 entity ranking track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 245–251. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85902-4_22CrossRefGoogle Scholar
  4. 4.
    Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 entity ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 243–252. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03761-0_25CrossRefGoogle Scholar
  5. 5.
    Demartini, G., Iofciu, T., de Vries, A.P.: Overview of the INEX 2009 entity ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 254–264. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14556-8_26CrossRefGoogle Scholar
  6. 6.
    Balog, K., Rijke, M.: Combining Candidate and Document Models for Expert Search. TREC (2008)Google Scholar
  7. 7.
    Vercoustre, A.-M., Pehcevski, J., Thom, J.A.: Using Wikipedia categories and links in entity ranking. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 321–335. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85902-4_28CrossRefGoogle Scholar
  8. 8.
    Kaptein, R., Kamps, J.: Exploiting the category structure of Wikipedia for entity ranking. Artif. Intell. 194, 111–129 (2013)CrossRefGoogle Scholar
  9. 9.
    Garigliotti, D., Balog, K.: On type-aware entity retrieval. In: ICTIR, pp. 27–34 (2017)Google Scholar
  10. 10.
    Balog, K., Neumayer, R.: Hierarchical target type identification for entity-oriented queries. In: CIKM, pp. 2391–2394 (2012)Google Scholar
  11. 11.
    Garigliotti, D., Hasibi, F., Balog, K.: Target type identification for entity-bearing queries. In: SIGIR, pp. 845–848 (2017)Google Scholar
  12. 12.
    Wang, Z., Wang, H., Hu, Z.: Head, modifier, and constraint detection in short texts. In: ICDE, pp. 280–291 (2014)Google Scholar
  13. 13.
    Bendersky, M., Metzler, D., Croft, W.: Learning concept importance using a weighted dependence model. In: WSDM, pp. 31–40 (2010)Google Scholar
  14. 14.
    Balog, K., Neumayer, R.: A test collection for entity search in DBpedia. In: SIGIR, pp. 737–740 (2013)Google Scholar
  15. 15.
    Roi, B., Harry, H., Daniel, M., Peter, M., Jeffrey, P., David, R., Henry, T.: Entity search evaluation over structured web data. In: SIGIR (2011)Google Scholar
  16. 16.
    Liang, S., Rijke, M.: Formal language models for finding groups of experts. Inf. Process. Manag. 52(4), 529–549 (2016)CrossRefGoogle Scholar
  17. 17.
    Macdonald, C., Ounis, I.: Voting techniques for expert search. Knowl. Inf. Syst. 16(3), 259–280 (2008)CrossRefGoogle Scholar
  18. 18.
    Metzler, D., Bruce, W.: Linear feature-based models for information retrieval. Inf. Retr. 10(3), 257–274 (2007)CrossRefGoogle Scholar
  19. 19.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimationand model selection. In: IJCAI, pp. 1137–1145 (1995)Google Scholar
  20. 20.
    Wu, W., Li, H., Wang, H., Zhu, K.: Probase: a probabilistic taxonomy for text understanding. In: SIGMOD, pp. 481–492 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Denghao Ma
    • 1
  • Yueguo Chen
    • 1
  • Xiaoyong Du
    • 1
  • Yuanzhe Hao
    • 2
  1. 1.Renmin University of ChinaBeijingChina
  2. 2.Shandong UniversityJinanChina

Personalised recommendations