A Time-Aware Path-Based Publish/Subscribe Framework

  • Mengdi Jia
  • Yan Zhao
  • Bolong Zheng
  • Guanfeng Liu
  • Kai Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

Nowadays, massive geo-tagged records are generated on the social media. These records are useful when the users intend to plan a trip and are interested in some specific topics along the trip. With such redundant records, a publish/subscribe system has been designed to allow the users who are interested in certain information (i.e., the subscribers) to receive messages from some message generators (i.e., the publishers). Existing efforts on publish/subscribe mainly focus on the textual content or the spatial location of the subscribers, while leaving the consideration of incorporating the subscribers’ moving behaviors and temporal information. Therefore, in this paper, we propose a Time-aware Path-based Publish/Subscribe (TPPS) model, where we propose a filtering-verification framework that contains two kinds of filters, i.e., time-aware location-based filter and time-aware region-based filter, with considering both temporal information and moving behaviors, and filtering unrelated subscriptions for each message. We evaluate the efficiency of our approach on a real-world dataset and the experimental results demonstrate the superiority of our method in both efficiency and effectiveness.

Keywords

Time-aware Path-based Publish/subscribe 

Notes

Acknowledgement

This research is partially supported by the Natural Science Foundation of China (Grant No. 61502324, 61532018).

References

  1. 1.
    Gupta, A., Sahin, O.D., Agrawal, D., El Abbadi, A.: Meghdoot: content-based publish/subscribe over P2P networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30229-2_14CrossRefGoogle Scholar
  2. 2.
    Vom Fachbereich Informatik: Large-scale content-based publish/subscribe systems. Technische Universitat, vol. 60, no. 3, p. 435C450 (2002)Google Scholar
  3. 3.
    Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)CrossRefGoogle Scholar
  4. 4.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)Google Scholar
  5. 5.
    Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters in spatial networks. IEEE Trans. Knowl. Data Eng. 27(6), 1505–1518 (2015)CrossRefGoogle Scholar
  6. 6.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Cong, G., Cao, X.: An efficient query indexing mechanism for filtering geo-textual data. In: SIGMOD, pp. 749–760 (2013)Google Scholar
  8. 8.
    Wang, Y., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: SIGKDD, pp. 802–810 (2013)Google Scholar
  9. 9.
    Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: AP-tree: efficiently support continuous spatial-keyword queries over stream. In: ICDE, pp. 1107–1118 (2015)Google Scholar
  10. 10.
    Jiang, H., Zhao, P., Sheng, V.S., Liu, G., Liu, A., Wu, J., Cui, Z.: An efficient location-aware publish/subscribe index with Boolean expressions. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T., Zhang, Y. (eds.) WISE 2015. LNCS, vol. 9418, pp. 216–231. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26190-4_15CrossRefGoogle Scholar
  11. 11.
    Church, K., Gale, W.: Inverse Document Frequency (IDF): A Measure of Deviations from Poisson, pp. 283–295. Springer, Netherlands (1999)Google Scholar
  12. 12.
    Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in data cleaning. In: ICDE, p. 5 (2006)Google Scholar
  13. 13.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: WWW, pp. 791–800 (2009)Google Scholar
  14. 14.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: UbiComp, pp. 312–321 (2008)Google Scholar
  15. 15.
    Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)Google Scholar
  16. 16.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W.C., Lee, D., Wang, X.: IR-tree: an efficient index for geographic document search. IEEE TKDE 23(4), 585–599 (2011)Google Scholar
  17. 17.
    Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656–665 (2008)Google Scholar
  18. 18.
    Haghani, P., Michel, S., Aberer, K.: Evaluating top-k queries over incomplete data streams. In: CIKM, pp. 877–886 (2009)Google Scholar
  19. 19.
    Haghani, P., Aberer, K., Michel, S.: The gist of everything new: personalized top-k processing over web 2.0 streams. In: CIKM, pp. 489–498 (2010)Google Scholar
  20. 20.
    Aberer, K.: Top-k/w publish/subscribe: finding k most relevant publications in sliding time window w. In: DEBS, pp. 127–138 (2008)Google Scholar
  21. 21.
    Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.: Top-k publish-subscribe for social annotation of news. PVLDB 6(6), 385–396 (2013)Google Scholar
  22. 22.
    Chen, L., Cong, G., Cao, X., Tan, K.L.: Temporal spatial-keyword top-k publish/subscribe. In: ICDE, pp. 255–266 (2015)Google Scholar
  23. 23.
    Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route search on road networks. TKDE 29(9), 1846–1859 (2017)Google Scholar
  24. 24.
    Zheng, K., Zheng, B., Xu, J., Liu, G., Liu, A., Li, Z.: Popularity-aware spatial keyword search on activity trajectories. WWWJ 20(4), 749–773 (2017)CrossRefGoogle Scholar
  25. 25.
    Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., Li, G.: Keyword-aware continuous knn query on road networks. In: ICDE, pp. 871–882 (2016)Google Scholar
  26. 26.
    Zheng, B., Yuan, N.J., Zheng, K., Xie, X., Sadiq, S.W., Zhou, X.: Approximate keyword search in semantic trajectory database. In: ICDE 2015, pp. 975–986 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mengdi Jia
    • 1
  • Yan Zhao
    • 1
  • Bolong Zheng
    • 2
    • 3
  • Guanfeng Liu
    • 1
  • Kai Zheng
    • 4
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  3. 3.Aalborg UniversityAalborgDenmark
  4. 4.Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations