Advertisement

Exploiting Reshaping Subgraphs from Bilateral Propagation Graphs

  • Saeid Hosseini
  • Hongzhi Yin
  • Ngai-Man Cheung
  • Kan Pak Leng
  • Yuval Elovici
  • Xiaofang Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

Given a graph over which defects, viruses, or contagions spread, leveraging a set of highly correlated subgraphs is an appealing research area with many applications. However, the challenges abound. Firstly, an initial defect in one node can cause different defects in other nodes. Second, while the time is the most significant medium to understand diffusion processes, it is not clear when the members of a subgraph may change. Third, given a pair of nodes, a contagion can spread in both directions. Previous works only consider the sequential time-window and suppose that the contagion may spread from one node to the other during a predefined time span. But the propagation can differ in various temporal dimensions (e.g. hours and days). Therefore, we propose a framework that takes both sequential and multi-aspect attributes of the time into consideration. Moreover, we devise an empirical model to estimate how frequently the subgraphs may reshape. Experiment show that our framework can effectively leverage the reshaping subgraphs.

Keywords

Propagation graphs Reshaping subgraphs Diffusion networks 

Notes

Acknowledgment

This work was supported by both ST Electronics and the National Research Foundation (NRF), Prime Minister’s Office, Singapore under Corporate Laboratory @ University Scheme (Programme Title: STEE Infosec - SUTD Corporate Laboratory).

References

  1. 1.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 57–66. ACM (2001)Google Scholar
  2. 2.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  3. 3.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  4. 4.
    Medlock, J., Galvani, A.P.: Optimizing influenza vaccine distribution. Science 325(5948), 1705–1708 (2009)CrossRefGoogle Scholar
  5. 5.
    Valente, T.W., Pitts, S.R.: An appraisal of social network theory and analysis as applied to public health: challenges and opportunities. Annu. Rev. Pub. Health 38, 103–118 (2017)CrossRefGoogle Scholar
  6. 6.
    Babishin, V., Taghipour, S.: Optimal maintenance policy for multicomponent systems with periodic and opportunistic inspections and preventive replacements. Appl. Math. Model. 40(23), 10480–10505 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cauchi, N., Macek, K., Abate, A.: Model-based predictive maintenance in building automation systems with user discomfort. Energy 138, 306–315 (2017)CrossRefGoogle Scholar
  8. 8.
    Hua, W., Wang, Z., Wang, H., Zheng, K., Zhou, X.: Short text understanding through lexical-semantic analysis. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 495–506. IEEE (2015)Google Scholar
  9. 9.
    Hosseini, S., Unankard, S., Zhou, X., Sadiq, S.: Location oriented phrase detection in microblogs. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8421, pp. 495–509. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05810-8_33CrossRefGoogle Scholar
  10. 10.
    Peng, S., Wang, G., Zhou, Y., Wan, C., Wang, C., Yu, S.: An immunization framework for social networks through big data based influence modeling. IEEE Trans. Dependable Secure Comput (2017)Google Scholar
  11. 11.
    Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1019–1028. ACM (2010)Google Scholar
  12. 12.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 241–250. ACM (2010)Google Scholar
  13. 13.
    Hosseini, S., Yin, H., Zhang, M., Zhou, X., Sadiq, S.: Jointly modeling heterogeneous temporal properties in location recommendation. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 490–506. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55753-3_31CrossRefGoogle Scholar
  14. 14.
    Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 529–537. ACM (2011)Google Scholar
  15. 15.
    Zhang, Y., Adiga, A., Saha, S., Vullikanti, A., Prakash, B.A.: Near-optimal algorithms for controlling propagation at group scale on networks. IEEE Trans. Knowl. Data Eng. 28(12), 3339–3352 (2016)CrossRefGoogle Scholar
  16. 16.
    Prakash, B.A., Chakrabarti, D., Valler, N.C., Faloutsos, M., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary networks. Knowl. Inf. Syst. 33(3), 549–575 (2012)CrossRefGoogle Scholar
  17. 17.
    Ghasemiesfeh, G., Ebrahimi, R., Gao, J.: Complex contagion and the weakness of long ties in social networks: revisited. In: Proceedings of the fourteenth ACM conference on Electronic Commerce, pp. 507–524. ACM (2013)Google Scholar
  18. 18.
    Khalil, E.B., Dilkina, B., Song, L.: Scalable diffusion-aware optimization of network topology. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1226–1235. ACM (2014)Google Scholar
  19. 19.
    Prakash, B.A., Beutel, A., Rosenfeld, R., Faloutsos, C.: Winner takes all: competing viruses or ideas on fair-play networks. In: Proceedings of the 21st International Conference on World Wide Web, pp. 1037–1046. ACM (2012)Google Scholar
  20. 20.
    Ganesh, A., Massouli, L., Towsley, D.: The effect of network topology on the spread of epidemics. In: Proceedings of the IEEE INFOCOM 2005, 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1455–1466. IEEE (2005)Google Scholar
  21. 21.
    Prakash, B.A., Adamic, L., Iwashyna, T., Tong, H., Faloutsos, C.: Fractional immunization in networks. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM 2013, pp. 659–667 (2013)CrossRefGoogle Scholar
  22. 22.
    Roth, D.Z., Henry, B.: Social distancing as a pandemic influenza prevention measure: evidence review. National Collaborating Centre for Infectious Diseases (2011)Google Scholar
  23. 23.
    Shim, E.: Optimal strategies of social distancing and vaccination against seasonal influenza. Math. Biosci. Eng. 10, 1615–1634 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)CrossRefGoogle Scholar
  25. 25.
    Saha, S., Adiga, A., Prakash, B.A., Vullikanti, A.K.S.: Approximation algorithms for reducing the spectral radius to control epidemic spread. In: Proceedings of the 2015 SIAM International Conference on Data Mining, SIAM 2015, pp. 568–576 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Prakash, B.A.: Dava: distributing vaccines over networks under prior information. In: Proceedings of the 2014 SIAM International Conference on Data Mining, SIAM 2014, pp. 46–54 (2014)CrossRefGoogle Scholar
  27. 27.
    Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, pp. 43–52 (2005)Google Scholar
  28. 28.
    Chen, C., Tong, H., Prakash, B.A., Tsourakakis, C.E., Eliassi-Rad, T., Faloutsos, C., Chau, D.H.: Node immunization on large graphs: theory and algorithms. IEEE Trans. Knowl. Data Eng. 28(1), 113–126 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Saeid Hosseini
    • 2
  • Hongzhi Yin
    • 1
  • Ngai-Man Cheung
    • 2
  • Kan Pak Leng
    • 2
  • Yuval Elovici
    • 2
  • Xiaofang Zhou
    • 1
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations