Advertisement

Attributed Network Embedding with Micro-meso Structure

  • Juan-Hui Li
  • Chang-Dong Wang
  • Ling Huang
  • Dong Huang
  • Jian-Huang Lai
  • Pei Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

Recently, network embedding has received a large amount of attention in network analysis. Although some network embedding methods have been developed from different perspectives, on one hand, most of the existing methods only focus on leveraging the plain network structure, ignoring the abundant attribute information of nodes. On the other hand, for some methods integrating the attribute information, only the lower-order proximities (e.g. microscopic proximity structure) are taken into account, which may suffer if there exists the sparsity issue and the attribute information is noisy. To overcome this problem, the attribute information and mesoscopic community structure are utilized. In this paper, we propose a novel network embedding method termed Attributed Network Embedding with Micro-Meso structure (ANEM), which is capable of preserving both the attribute information and the structural information including the microscopic proximity structure and mesoscopic community structure. In particular, both the microscopic proximity structure and node attributes are factorized by Nonnegative Matrix Factorization (NMF), from which the low-dimensional node representations can be obtained. For the mesoscopic community structure, a community membership strength matrix is inferred by a generative model from the linkage structure, which is then factorized by NMF to obtain the low-dimensional node representations. The three components are jointly correlated by the low-dimensional node representations, from which an objective function can be defined. An efficient alternating optimization scheme is proposed to solve the optimization problem. Extensive experiments have been conducted to confirm the superior performance of the proposed model over the state-of-the-art network embedding methods.

Keywords

Network embedding Node attribute Microscopic proximity structure Mesoscopic community structure 

Notes

Acknowledgments

This work was supported by NSFC (61502543 & 61602189), Guangdong Natural Science Funds for Distinguished Young Scholar (2016A030306014), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (2016A030310457), and Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2016TQ03X542).

References

  1. 1.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD, pp. 701–710 (2014)Google Scholar
  2. 2.
    Yang, D., Wang, S., Li, C., Zhang, X., Li, Z.: From properties to links: deep network embedding on incomplete graphs. In: CIKM, pp. 367–376 (2017)Google Scholar
  3. 3.
    Li, C., Li, Z., Wang, S., Yang, Y., Zhang, X., Zhou, J.: Semi-supervised network embedding. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 131–147. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55753-3_9CrossRefGoogle Scholar
  4. 4.
    Li, H., Wang, H., Yang, Z., Odagaki, M.: Variation autoencoder based network representation learning for classification. In: Proceedings of ACL 2017, Student Research Workshop, pp. 56–61 (2017)Google Scholar
  5. 5.
    Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C., Cambria, E.: Learning community embedding with community detection and node embedding on graphs. In: CIKM (2017)Google Scholar
  6. 6.
    Lai, Y.A., Hsu, C.C., Chen, W.H., Yeh, M.Y., Lin, S.D.: Preserving proximity and global ranking for node embedding. In: NIPS, pp. 5261–5270 (2017)Google Scholar
  7. 7.
    Wang, H., Zhang, F., Hou, M., Xie, X., Guo, M., Liu, Q.: SHINE: signed heterogeneous information network embedding for sentiment link prediction. In: WSDM (2018)Google Scholar
  8. 8.
    Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on Twitter. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1301–1309 (2011)Google Scholar
  9. 9.
    Pennacchiotti, M., Popescu, A.M.: Democrats, republicans and starbucks afficionados: user classification in Twitter. In: KDD, pp. 430–438 (2011)Google Scholar
  10. 10.
    Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI, pp. 1895–1901 (2016)Google Scholar
  11. 11.
    Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: WSDM, pp. 731–739 (2017)Google Scholar
  12. 12.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  13. 13.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)Google Scholar
  14. 14.
    Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: KDD, pp. 1225–1234 (2016)Google Scholar
  15. 15.
    Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: CIKM, pp. 891–900 (2015)Google Scholar
  16. 16.
    Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: Struc2vec: learning node representations from structural identity. In: KDD, pp. 385–394 (2017)Google Scholar
  17. 17.
    Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI, pp. 203–209 (2017)Google Scholar
  18. 18.
    Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: WSDM, pp. 587–596 (2013)Google Scholar
  19. 19.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2001)Google Scholar
  20. 20.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)CrossRefGoogle Scholar
  21. 21.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  22. 22.
    Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)Google Scholar
  23. 23.
    Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: KDD, pp. 1105–1114 (2016)Google Scholar
  24. 24.
    Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117 (2015)Google Scholar
  25. 25.
    Liao, L., He, X., Zhang, H., Chua, T.S.: Attributed social network embedding. arXiv preprint arXiv:1705.04969 (2017)
  26. 26.
    Li, C., Wang, S., Yang, D., Li, Z., Yang, Y., Zhang, X., Zhou, J.: PPNE: property preserving network embedding. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 163–179. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55753-3_11CrossRefGoogle Scholar
  27. 27.
    Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: SDM, pp. 633–641 (2017)CrossRefGoogle Scholar
  28. 28.
    Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embedding for learning in a dynamic environment. arXiv preprint arXiv:1706.01860 (2017)
  29. 29.
    Huang, X., Song, Q., Li, J., Hu, X.B.: Exploring expert cognition for attributed network embedding. In: WSDM (2018)Google Scholar
  30. 30.
    Akata, Z., Thurau, C., Bauckhage, C.: Non-negative matrix factorization in multimodality data for segmentation and label prediction. In: 16th Computer Vision Winter Workshop (2011)Google Scholar
  31. 31.
    Zhao, B., Sen, P., Getoor, L.: Event classification and relationship labeling in affiliation networks. In: Proceedings of the Workshop on Statistical Network Analysis (SNA) at the 23rd International Conference on Machine Learning (ICML) (2006)Google Scholar
  32. 32.
    Liu, L., Xu, L., Wangy, Z., Chen, E.: Community detection based on structure and content: a content propagation perspective. In: ICDM, pp. 271–280 (2015)Google Scholar
  33. 33.
    Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan-Hui Li
    • 1
  • Chang-Dong Wang
    • 1
  • Ling Huang
    • 1
  • Dong Huang
    • 2
  • Jian-Huang Lai
    • 1
    • 3
  • Pei Chen
    • 1
  1. 1.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina
  2. 2.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina
  3. 3.XinHua CollegeSun Yat-sen UniversityGuangzhouChina

Personalised recommendations