Advertisement

External Topological Sorting in Large Graphs

  • Zhu Qing
  • Long Yuan
  • Fan Zhang
  • Lu Qin
  • Xuemin Lin
  • Wenjie Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

Topological sorting is a fundamental problem in graph analysis. Given the fact that real world graphs grow rapidly so that they cannot entirely reside in main memory, in this paper, we study external memory algorithms for the topological sorting problem. We propose a contraction-expansion paradigm and devise an external memory algorithm based on the paradigm for the topological sorting problem. Our new algorithm is efficient due to the introduction of the new paradigm and can be implemented easily by using the fundamental external memory primitives. We conduct extensive experiments on real and synthesis graphs and the results demonstrate the efficiency of our proposed algorithm.

Notes

Acknowledgements

Long Yuan is supported by Huawei YBN2017100007. Fan Zhang is supported by Huawei YBN2017100007. Lu Qin is supported by ARC DP160101513. Xuemin Lin is supported by NSFC 61672235, ARC DP170101628, DP180103096 and Huawei YBN2017100007. Wenjie Zhang is supported by ARC DP180103096 and Huawei YBN2017100007.

References

  1. 1.
    Aggarwal, A., Vitter, J., et al.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ajwani, D., Cosgaya-Lozano, A., Zeh, N.: A topological sorting algorithm for large graphs. J. Exp. Algorithmics 17, Article No. 3.2 (2012)Google Scholar
  3. 3.
    Angel, E., Campigotto, R., Laforest, C.: Analysis and comparison of three algorithms for the vertex cover problem on large graphs with low memory capacities. Algorithmic Oper. Res. 6(1), 56–67 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arge, L., Revsbæk, M.: I/O-efficient contour tree simplification. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1155–1165. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10631-6_116CrossRefGoogle Scholar
  5. 5.
    Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Moving from social networks to social internetworking scenarios: the crawling perspective. Inf. Sci. 256, 126–137 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: Proceedings of ICDE, pp. 51–62 (2011)Google Scholar
  7. 7.
    Cheng, J., Ke, Y., Fu, A.W.-C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. TODS 36(4), 21 (2011)CrossRefGoogle Scholar
  8. 8.
    Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E.: External-memory graph algorithms. In: SODA, vol. 95, pp. 139–149 (1995)Google Scholar
  9. 9.
    Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  10. 10.
    Hu, X., Tao, Y., Chung, C.-W.: Massive graph triangulation. In: Proceedings of SIGMOD, pp. 325–336 (2013)Google Scholar
  11. 11.
    Maheshwari, A., Zeh, N.: I/O-efficient planar separators. SIAM J. Comput. 38(3), 767–801 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Inform. 6(2), 171–185 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, J., Cheng, J.: Truss decomposition in massive networks. Proc. VLDB Endow. 5(9), 812–823 (2012)CrossRefGoogle Scholar
  15. 15.
    Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Diversified top-k clique search. VLDB J. 25(2), 171–196 (2016)CrossRefGoogle Scholar
  16. 16.
    Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: I/O efficient ECC graph decomposition via graph reduction. PVLDB 9(7), 516–527 (2016)Google Scholar
  17. 17.
    Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: I/O efficient ECC graph decomposition via graph reduction. VLDB J. 26(2), 275–300 (2017)CrossRefGoogle Scholar
  18. 18.
    Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 445–458 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhu Qing
    • 1
  • Long Yuan
    • 2
  • Fan Zhang
    • 2
  • Lu Qin
    • 3
  • Xuemin Lin
    • 2
  • Wenjie Zhang
    • 2
  1. 1.East China Normal UniversityShanghaiChina
  2. 2.The University of New South WalesSydneyAustralia
  3. 3.Centre for Artificial IntelligenceUniversity of Technology SydneySydneyAustralia

Personalised recommendations