Local Optima Networks in Solving Algorithm Selection Problem for TSP

  • Wojciech BożejkoEmail author
  • Andrzej Gnatowski
  • Teodor Niżyński
  • Michael Affenzeller
  • Andreas Beham
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 761)


In the era of commonly available problem-solving tools for, it is especially important to choose the best available method. We use local optima network analysis and machine learning to select appropriate algorithms on the instance-to-instance basis. The preliminary results show that such method can be successfully applied for sufficiently distinct instances and algorithms.


Algorithm selection problem Fitness landscape analysis Local optima networks Travelling salesman problem 


  1. 1.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  2. 2.
    Bożejko, W., Gnatowski, A., Idzikowski, R., Wodecki, M.: Cyclic flow shop scheduling problem with two-machine cells. Arch. Control Sci. 27(2), 151–167 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bożejko, W., Gnatowski, A., Niżyński, T., Wodecki, M.: Tabu search algorithm with neural tabu mechanism for the cyclic job shop problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 409–418. Springer, Cham (2016)Google Scholar
  4. 4.
    Bożejko, W., Gnatowski, A., Pempera, J., Wodecki, M.: Parallel tabu search for the cyclic job shop scheduling problem. Comput. Ind. Eng. 113, 512–524 (2017)CrossRefGoogle Scholar
  5. 5.
    Bożejko, W., Pempera, J., Wodecki, M.: Parallel simulated annealing algorithm for cyclic flexible job shop scheduling problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 603–612. Springer, Cham (2015)CrossRefGoogle Scholar
  6. 6.
    Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven local optima network characterization of QAPLIB instances. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 453–460. ACM Press, New York (2014)Google Scholar
  9. 9.
    Jana, N.D., Sil, J., Das, S.: Selection of appropriate metaheuristic algorithms for protein structure prediction in AB off-lattice model: a perspective from fitness landscape analysis. Inf. Sci. 391–392, 28–64 (2017)CrossRefGoogle Scholar
  10. 10.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds.) Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach, pp. 149–190. Springer, Cham (2016)CrossRefGoogle Scholar
  11. 11.
    Ochoa, G., Veerapen, N.: Additional dimensions to the study of funnels in combinatorial landscapes. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 373–380. ACM Press, New York (2016)Google Scholar
  12. 12.
    Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes. J. Heuristics 1–30 (2017)Google Scholar
  13. 13.
    Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, pp. 233–262. Springer, Heidelberg (2014). Chapter 9CrossRefGoogle Scholar
  14. 14.
    Pitzer, E., Beham, A., Affenzeller, M.: Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis. In: Proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2013, pp. 109–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)CrossRefGoogle Scholar
  16. 16.
    Smith-Miles, K.A.: Neural networks for prediction and classification. In: Wang, J. (ed.) Encyclopaedia of Data Warehousing and Mining, pp. 865–869. Information Science Publishing (2006)Google Scholar
  17. 17.
    Smith-Miles, K.A.: Towards insightful algorithm selection for optimisation using meta-learning concepts. In: IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 4118–4124. IEEE, June 2008Google Scholar
  18. 18.
    Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Thomson, S.L., Ochoa, G., Daolio, F., Veerapen, N.: The effect of landscape funnels in QAPLIB instances. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 1495–1500. ACM Press, New York (2017)Google Scholar
  20. 20.
    Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: the NK landscape case. Phys. Rev. E 78(6), 066114 (2008)CrossRefGoogle Scholar
  21. 21.
    Vaishnav, P., Choudhary, N., Jain, K.: Traveling salesman problem using genetic algorithm: a survey. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 3(3), 105–108 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Wojciech Bożejko
    • 1
    • 3
    Email author
  • Andrzej Gnatowski
    • 1
    • 3
  • Teodor Niżyński
    • 1
    • 3
  • Michael Affenzeller
    • 2
    • 3
  • Andreas Beham
    • 2
    • 3
  1. 1.Department of Automatics, Mechatronics and Control SystemsWrocław University of Science and TechnologyWrocławPoland
  2. 2.Heuristic and Evolutionary Algorithms LaboratoryUniversity of Applied Sciences Upper AustriaHagenbergAustria
  3. 3.Institute for Formal Models and VerificationJohannes Kepler University LinzLinzAustria

Personalised recommendations