Skip to main content

Railway Operation Schedule Evaluation with Respect to the System Robustness

  • Conference paper
  • First Online:
Contemporary Complex Systems and Their Dependability (DepCoS-RELCOMEX 2018)

Abstract

Due to infrastructure constraints in railway transportation system, each disruption can have a very important influence on the system operation. Therefore, it is important to evaluate transportation processes during their designing phase. The structure of timetable is a key factor, that has effect on the transportation system robustness. A large number of possible cases of train scheduling in the timetable makes it currently impossible to deal with this factor. Therefore, an analysis method to evaluate timetable qualities is needed. The paper is focussed on system robustness due to the timetable structure. A robust timetable leading to a robust transportation system is resistant to strokes from undesirable events. In other words, for a robust timetable there is lack of disruption propagation. The challenge arises how to quantify the robustness of the railway transportation system. Thus, the paper discusses issues related to robustness in context of time reserves. Correct dealing with time reserves is a multidimensional issue. Increasing time reserves increases also the robustness. While, the network capacity decreases. That is why ongoing research results will be useful for timetable designing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acuna-Agost, R., et al.: SAPI: Statistical Analysis of Propagation of Incidents. A new approach for rescheduling trains after disruptions. Eur. J. Oper. Res. 215, 227–243 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bach, L., et al.: Freight railway operator timetabling and engine scheduling. Eur. J. Oper. Res. 241(2), 309–319 (2015)

    Article  MathSciNet  Google Scholar 

  3. Beck, C., Briggs, K.: Modelling train delays with q-exponential functions. Phys. A Stat. Mech. Appl. 378(2), 498–504 (2007). https://doi.org/10.1016/j.physa.2006.11.084

    Article  MathSciNet  Google Scholar 

  4. Canca, D., et al.: Design and analysis of demand-adapted railway timetables. J. Adv. Transp. 48(2), 119–137 (2014)

    Article  Google Scholar 

  5. Lua, C., Tanga, J., Zhoua, L., Yuea, Y., Huangb, Z.: Improving recovery-to-optimality robustness through efficiency balanced design of timetable structure. Transp. Res. Part C 85, 184–210 (2017)

    Article  Google Scholar 

  6. Dicembre, A., Ricci, S.: Railway traffic on high density urban corridors: capacity, signalling and timetable. J. Rail Transp. Plann. Manag. 1(2), 59–68 (2011)

    Article  Google Scholar 

  7. Andersson, E.V., Peterson, A., Krasemann, J.T.: Quantifying railway timetable robustness in critical points. J. Rail Transp. Plann. Manag. 3, 95–110 (2013)

    Article  Google Scholar 

  8. Enjalbert, S., et al.: Assessment of transportation system resilience. In: Human Modelling in Assisted Transportation. Springer (2011)

    Chapter  Google Scholar 

  9. Hansen, I., Pachl, J.: Railway timetable and traffic: analysis-modelling-simulation. Eurailpress, Zagreb Kliewer. A note on the online nature of the railway delay management problem. Networks 57 (2011)

    Google Scholar 

  10. Jodejko-Pietruczuk, A., Werbińska-Wojciechowska, S.: Development and sensitivity analysis of a technical object inspection model based on the delay-time concept use. Eksploatacja i Niezawodność - Maint. Reliab. 19(3), 403–412 (2017). https://doi.org/10.17531/ein.2017.3.11

    Article  Google Scholar 

  11. Jodejko-Pietruczuk, A., Werbińska-Wojciechowska, S.: Block inspection policy model with imperfect maintenance for single-unit systems. Procedia Eng. 187, 570–581 (2017). https://doi.org/10.1016/j.proeng.2017.04.416

    Article  Google Scholar 

  12. Ke, B.R., et al.: A new approach for improving the performance of freight train timetabling of a single-track railway system. Transp. Plann. Technol. 38, 238–264 (2015)

    Article  Google Scholar 

  13. Kierzkowski, A., Kisiel, T.: Simulation model of security control system functioning: a case study of the Wroclaw airport terminal. J. Air Transp. Manag. (2016). https://doi.org/10.1016/j.jairtraman.2016.09.008

    Article  Google Scholar 

  14. Kierzkowski, A.: Method for management of an airport security control system. Proc. Inst. Civ. Eng. Transp. (2016). https://doi.org/10.1680/jtran.16.00036

    Article  Google Scholar 

  15. Kisiel, T., Zak, L., Valis, D.: Application of regression function - two areas for technical system operation assessment. In: CLC 2013: Carpathian Logistics Congress - Congress Proceedings, pp. 500–505. WOS:000363813400076 (2014)

    Google Scholar 

  16. Kroon, L., Huisman, D.: Algorithmic support for railway disruption management. In: Transitions Towards Sustainable Mobility Part 3. Springer-Verlag (2011)

    Chapter  Google Scholar 

  17. Larsen, R., Pranzo, M.: A framework for dynamic re-scheduling problems. Technical report 2012–01, Dip. Ingegneria dell’Informazione. University of Siena (2012)

    Google Scholar 

  18. Liebchen, C., et al.: Computing delay resistant railway timetables. Comput. Oper. Res. 37, 857–868 (2010)

    Article  Google Scholar 

  19. Bešinović, N., Goverde, R.M., Quaglietta, E., Roberti, R.: An integrated micro–macro approach to robust railway timetabling. Transp. Res. Part B 87, 14–32 (2016)

    Article  Google Scholar 

  20. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417 (2009)

    Article  MathSciNet  Google Scholar 

  21. Pender, B., et al.: Disruption recovery in passenger railways international survey. Transp. Res. Rec. 2353, 22–32 (2013)

    Article  Google Scholar 

  22. Potthoff, G.: Verkehrsströmungslehre (Band 1) – Die Zugfolge auf Strecken und in Bahnhöfen. Transpress (1970)

    Google Scholar 

  23. Restel, F.J.: Defining states in reliability and safety modelling. Adv. Intell. Syst. Comput. 365, 413–423 (2015). https://doi.org/10.1007/978-3-319-19216-1_39

    Article  Google Scholar 

  24. Lusby, R.M., Larsen, J., Bull, S.: A survey on robustness in railway planning. Eur. J. Oper. Res. 266, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  25. Schachtebeck, M., Schöbel, A.: To wait or not to wait and who goes first? Delay management with priority decisions. Transp. Sci. 44, 307–321 (2010)

    Article  Google Scholar 

  26. Schöbel, A., Maly, T.: Operational fault states in railways. Eur. Transp. Res. Rev. 4, 107–113 (2012)

    Article  Google Scholar 

  27. Tubis, A., Werbińska-Wojciechowska, S.: Operational risk assessment in road passenger transport companies performing at Polish market. In: European Safety and Reliability ESREL 2017, Portoroz, Slovenia, 18–22 June 2017

    Google Scholar 

  28. Vromans, M., et al.: Reliability and heterogeneity of railway services. Eur. J. Oper. Res. 172, 647–665 (2006)

    Article  Google Scholar 

  29. Walkowiak, T., Mazurkiewicz, J.: Soft computing approach to discrete transport system management. In: Lecture Notes in Computer Science. Lecture Notes in Artificial Intelligence, vol. 6114, pp. 675–682 (2010). https://doi.org/10.1007/978-3-642-13232-2_83

    Chapter  Google Scholar 

  30. Walkowiak, T., Mazurkiewicz, J.: Analysis of critical situations in discrete transport systems. In: Proceedings of DepCoS - RELCOMEX 2009, Brunów, Poland, 30 June – 02 July 2009. pp. 364–371. IEEE (2009). https://doi.org/10.1109/depcos-relcomex.2009.39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciszek J. Restel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedrich, J., Restel, F.J., Wolniewicz, Ł. (2019). Railway Operation Schedule Evaluation with Respect to the System Robustness. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Contemporary Complex Systems and Their Dependability. DepCoS-RELCOMEX 2018. Advances in Intelligent Systems and Computing, vol 761. Springer, Cham. https://doi.org/10.1007/978-3-319-91446-6_19

Download citation

Publish with us

Policies and ethics