Abstract
Crizotinib is an ATP-competitive small-molecule inhibitor of the receptor tyrosine kinases (RTK) C-Met, ALK and ROS1. There is a robust effectiveness in non-small-cell lung cancer (NSCLC) harbouring EML4-ALK-rearrangements resulting in constitutional activation of the ALK-RTK. The drug is approved for this entity, which represents no more than 3–5% of all NSCLC. However, in this population, impressive response rates are generated. The same is true for ROS-1 rearrangements; however, these only occur in approximately 1% of all NSCLC. In small series, efficacy is also reported in patients, whose tumours harbour a MET Exon 4 skipping mutation (approx. 3% of all NSCLC). Toxicities include visual impairment, nausea, peripheral edema, QT-prolongation and liver-enzyme elevation. Also, the occurrence of renal cysts is reported. The detection of ALK-protein by immunohistochemistry is a predictor of efficacy for crizotinib. In cases of doubt, fluorescence in situ hybridisation (FISH) detecting the ALK-rearrangement has to be performed on tumour tissue. FISH is also the method of choice to detect ROS1-rearrangement, whereas MET-mutations are detected by sequencing methods. The high efficacy of crizotinib in ALK- and ROS-rearranged as well as MET mutated lung cancer as new molecular targets beside the epidermal growth factor receptor (EGFR) underscores the importance of molecular typing in NSCLC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Awad MM, Leonardi GC, Kravets S et al (2017) Impact of MET inhibitors on survival among patients (pts) with MET exon 14 mutant (METdel14) non-small cell lung cancer (NSCLC). J Clin Oncol: Off J Am Soc Clin Oncol 35
Camidge DR, Bang YJ, Kwak EL et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13:1011–1019
Choi YL, Soda M, Yamashita Y et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739
Christensen JG, Zou HY, Arango ME et al (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6:3314–3322
Cilloni D, Carturan S, Bracco E et al (2013) Aberrant activation of ROS1 represents a new molecular defect in chronic myelomonocytic leukemia. Leuk Res 37:520–530
Costa DB, Kobayashi S, Pandya SS et al (2011) CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol: Off J Am Soc Clin Oncol 29:e443–e445
Cui JJ, Tran-Dube M, Shen H et al (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363
Curran MP (2012) Crizotinib: in locally advanced or metastatic non-small cell lung cancer. Drugs 72:99–107
Fleuren ED, Roeffen MH, Leenders WP et al (2013) Expression and clinical relevance of MET and ALK in Ewing sarcomas. Int J Cancer 133:427–436
Frampton GM, Ali SM, Rosenzweig M et al (2015) Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 5:850–859
Gainor JF, Dardaei L, Yoda S et al (2016) Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 6:1118–1133
Inc. P. Xalkori (Crizotinib) Prescribing Information. 2012
Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703
Lee J, Lee SE, Kang SY et al (2013) Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 119:1627–1635
Lee J, Ou SH, Lee JM et al (2015) Gastrointestinal malignancies harbor actionable MET exon 14 deletions. Oncotarget 6:28211–28222
Matthay KK, George RE, Yu AL (2012) Promising therapeutic targets in neuroblastoma. Clin Cancer Res 18:2740–2753
Mok T, Kim D, Wu Y et al (2017) Overall survival (OS) for first-line crizotinib versus chemotherapy in ALK+ lung cancer: updated results from PROFILE 1014. Ann Oncol 28:v605–v649
Mosse YP, Voss SD, Lim MS et al (2017) Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a children’s oncology group study. J Clin Oncol: Off J Am Soc Clin Oncol 35:3215–3221
Okamoto W, Okamoto I, Arao T et al (2012) Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther 11:1557–1564
Ordemann R, Stohlmacher J, Beuthien-Baumann B et al (2013) Use of targeted therapy for refractory ALK-positive anaplastic large cell lymphoma as a bridging strategy prior to allogeneic transplantation. Ann Hematol 92:125–127
Peters S, Camidge DR, Shaw AT et al (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838
Rodig SJ, Shapiro GI (2010) Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Invest Drugs 11:1477–1490
Sasaki T, Okuda K, Zheng W et al (2010) The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res 70:10038–10043
Shaw AT, Yeap BY, Solomon BJ et al (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12:1004–1012
Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med
Shaw AT, Ou SH, Bang YJ et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963–1971
Solomon BJ, Mok T, Kim DW et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167–2177
Tang SC, Nguyen LN, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2014) Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer 134:1484–1494
Tothova Z, Wagner AJ (2012) Anaplastic lymphoma kinase-directed therapy in inflammatory myofibroblastic tumors. Curr Opin Oncol 24:409–413
von Laffert M, Schirmacher P, Warth A et al (2016) Statement of the German Society for Pathology and the working group thoracic oncology of the working group oncology/German Cancer Society on ALK testing in NSCLC: immunohistochemistry and/or FISH? Pathologe 37:187–192
Yasuda H, de Figueiredo-Pontes LL, Kobayashi S, Costa DB (2012) Preclinical rationale for use of the clinically available multitargeted tyrosine kinase inhibitor crizotinib in ROS1-translocated lung cancer. J Thorac Oncol 7:1086–1090
Zou HY, Li Q, Lee JH et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Heigener, D.F., Reck, M. (2018). Crizotinib. In: Martens, U. (eds) Small Molecules in Oncology. Recent Results in Cancer Research, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-91442-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-91442-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91441-1
Online ISBN: 978-3-319-91442-8
eBook Packages: MedicineMedicine (R0)