Abstract
We survey basic ideas and results on randomized quasi-Monte Carlo (RQMC) methods, discuss their practical aspects, and give numerical illustrations. RQMC can improve accuracy compared with standard Monte Carlo (MC) when estimating an integral interpreted as a mathematical expectation. RQMC estimators are unbiased and their variance converges at a faster rate (under certain conditions) than MC estimators, as a function of the sample size. Variants of RQMC also work for the simulation of Markov chains, for function approximation and optimization, for solving partial differential equations, etc. In this introductory survey, we look at how RQMC point sets and sequences are constructed, how we measure their uniformity, why they can work for high-dimensional integrals, and how can they work when simulating Markov chains over a large number of steps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer, New York (2007)
Avramidis, A.N., Wilson, J.R.: Correlation-induction techniques for estimating quantiles in simulation experiments. Oper. Res. 46(4), 574–591 (1998)
Avramidis, A.N., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance-gamma model. Manag. Sci. 52(12), 1930–1944 (2006)
Avramidis, A.N., L’Ecuyer, P., Tremblay, P.A.: Efficient simulation of gamma and variance-gamma processes. In: Proceedings of the 2003 Winter Simulation Conference, pp. 319–326. IEEE Press, Piscataway, New Jersey (2003)
Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. J. Comput. Financ. 1(1), 27–46 (1997)
Chen, S., Dick, J., Owen, A.B.: Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Ann. Stat. 39(2), 673–701 (2011)
Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13(6), 904–914 (1976)
Demers, V., L’Ecuyer, P., Tuffin, B.: A combination of randomized quasi-Monte Carlo with splitting for rare-event simulation. In: Proceedings of the 2005 European Simulation and Modeling Conference, pp. 25–32. EUROSIS, Ghent, Belgium (2005)
Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K. (2010)
Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006)
Dion, M., L’Ecuyer, P.: American option pricing with randomized quasi-Monte Carlo simulations. In: Proceedings of the 2010 Winter Simulation Conference, pp. 2705–2720 (2010)
Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen W., Srivastav A., Travaglini G. (eds.) A Panorama of Discrepancy Theory, pp. 621–678. Springer, Berlin (2014)
El Haddad, R., Lécot, C., L’Ecuyer, P., Nassif, N.: Quasi-Monte Carlo methods for Markov chains with continuous multidimensional state space. Math. Comput. Simul. 81, 560–567 (2010)
Faure, H.: Discrépance des suites associées à un système de numération en dimension \(s\). Acta Arith. 61, 337–351 (1982)
Gerber, M., Chopin, N.: Sequential quasi-Monte Carlo. J. R. Stat. Soc. Ser. B 77(Part 3), 509–579 (2015)
Haber, S.: A modified Monte Carlo quadrature. Math. Comput. 19, 361–368 (1966)
Hickernell, F.J.: The mean square discrepancy of randomized nets. ACM Trans. Model. Comput. Simul. 6(4), 274–296 (1996)
Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67(221), 299–322 (1998)
Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer, Berlin (2000)
Hickernell, F.J.: Obtaining \({O(N^{-2+\epsilon })}\) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)
Hickernell, F.J.: Error analysis for quasi-Monte Carlo methods. In: Glynn P.W., Owen A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2016 (2017)
Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for quasi-Monte Carlo. Stat. Sci. 20(1), 1–31 (2005)
Hong, H.S., Hickernell, F.H.: Algorithm 823: implementing scrambled digital sequences. ACM Trans. Math. Softw. 29, 95–109 (2003)
Imai, J., Tan, K.S.: Enhanced quasi-Monte Carlo methods with dimension reduction. In: Yücesan E., Chen C.H., Snowdon J.L., Charnes J.M. (eds.) Proceedings of the 2002 Winter Simulation Conference, pp. 1502–1510. IEEE Press, Piscataway, New Jersey (2002)
Imai, J., Tan, K.S.: A general dimension reduction technique for derivative pricing. J. Comput. Financ. 10(2), 129–155 (2006)
Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30(5), 2635–2654 (2008)
L’Ecuyer, P.: Quasi-Monte Carlo methods in finance. In: Proceedings of the 2004 Winter Simulation Conference, pp. 1645–1655. IEEE Press, Piscataway, New Jersey (2004)
L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Financ. Stoch. 13(3), 307–349 (2009)
L’Ecuyer, P.: SSJ: Stochastic simulation in Java (2016). http://simul.iro.umontreal.ca/ssj/
L’Ecuyer, P., Demers, V., Tuffin, B.: Rare-events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2), Article 9 (2007)
L’Ecuyer, P., Lécot, C., L’Archevêque-Gaudet, A.: On array-RQMC for Markov chains: mapping alternatives and convergence rates. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 485–500. Springer, Berlin (2009)
L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56(4), 958–975 (2008)
L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46(9), 1214–1235 (2000)
L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002)
L’Ecuyer, P., Munger, D.: On figures of merit for randomly-shifted lattice rules. In: Woźniakowski, H., Plaskota, L. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159. Springer, Berlin (2012)
L’Ecuyer, P., Munger, D.: Algorithm 958: lattice builder: A general software tool for constructing rank-1 lattice rules. ACM Trans. Math. Softw. 42(2), Article 15 (2016)
L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for array-rqmc: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018). https://doi.org/10.1016/j.matcom.2016.07.010
L’Ecuyer, P., Munger, D., Tuffin, B.: On the distribution of integration error by randomly-shifted lattice rules. Electron. J. Stat. 4, 950–993 (2010)
L’Ecuyer, P., Sanvido, C.: Coupling from the past with randomized quasi-Monte Carlo. Math. Comput. Simul. 81(3), 476–489 (2010)
L’Ecuyer, P., Simard, R.: Inverting the symmetrical beta distribution. ACM Trans. Math. Softw. 32(4), 509–520 (2006)
Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009)
Lemieux, C., Cieslak, M., Luttmer, K.: RandQMC user’s guide: a package for randomized Quasi-Monte Carlo methods in C (2004). Software user’s guide. http://www.math.uwaterloo.ca/~clemieux/randqmc.html
Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM J. Sci. Comput. 24(5), 1768–1789 (2003)
Liu, R., Owen, A.B.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006)
Loh, W.L.: On the asymptotic distribution of scramble nets quadratures. Ann. Stat. 31, 1282–1324 (2003)
Madan, D.B., Carr, P.P., Chang, E.C.: The variance gamma process and option pricing. Eur. Financ. Rev. 2, 79–105 (1998)
Mara, T.A., Rakoto, J.O.: Comparison of some efficient methods to evaluate the main effect of computer model factors. J. Stat. Comput. Simul. 78(2), 167–178 (2008)
Matousěk, J.: On the \(L_2\)-discrepancy for anchored boxes. J. Complex. 14, 527–556 (1998)
Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (1999)
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)
Niederreiter, H., Xing, C.: Nets, \((t, s)\)-sequences, and algebraic geometry. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 267–302. Springer, New York (1998)
Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, pp. 223–255. De Gruyter, Berlin (2014)
Owen, A.B.: Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer. Anal. 34(5), 1884–1910 (1997)
Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25(4), 1541–1562 (1997)
Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul. 8(1), 71–102 (1998)
Owen, A.B.: Variance with alternative scramblings of digital nets. ACM Trans. Model. Comput. Simul. 13(4), 363–378 (2003)
Owen, A.B.: Better estimation of small sobol sensitivity indices. ACM Trans. Model. Comput. Simul. 23(2), Article 11 (2013)
Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)
Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals. J. Complex. 14, 1–33 (1998)
Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complex. 17(4), 697–721 (2001)
Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. Math. Phys. 7(4), 86–112 (1967)
Sobol’, I.M.: Sensitivity indices for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)
Sobol’, I.M., Myshetskaya, E.E.: Monte Carlo estimators for small sensitivity indices. Monte Carlo Methods Appl. 13(5–6), 455–465 (2007)
Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic, Boston (1995)
Tribble, S.D., Owen, A.B.: Constructions of weakly CUD sequences for MCMC. Electron. J. Stat. 2, 634–660 (2008)
Wächter, C., Keller, A.: Efficient simultaneous simulation of Markov chains. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 669–684. Springer, Berlin (2008)
Acknowledgements
This work has been supported by a Canada Research Chair, an Inria International Chair, a NSERC Discovery Grant, to the author. It was presented at the MCQMC conference with the help of SAMSI funding. David Munger made Figs. 9 and 10. Several comments from the Guest Editor Art Owen helped improving the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
L’Ecuyer, P. (2018). Randomized Quasi-Monte Carlo: An Introduction for Practitioners. In: Owen, A., Glynn, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Springer Proceedings in Mathematics & Statistics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-91436-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-91436-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91435-0
Online ISBN: 978-3-319-91436-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)