Skip to main content

Randomized Quasi-Monte Carlo: An Introduction for Practitioners

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 241))

  • 2135 Accesses

Abstract

We survey basic ideas and results on randomized quasi-Monte Carlo (RQMC) methods, discuss their practical aspects, and give numerical illustrations. RQMC can improve accuracy compared with standard Monte Carlo (MC) when estimating an integral interpreted as a mathematical expectation. RQMC estimators are unbiased and their variance converges at a faster rate (under certain conditions) than MC estimators, as a function of the sample size. Variants of RQMC also work for the simulation of Markov chains, for function approximation and optimization, for solving partial differential equations, etc. In this introductory survey, we look at how RQMC point sets and sequences are constructed, how we measure their uniformity, why they can work for high-dimensional integrals, and how can they work when simulating Markov chains over a large number of steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer, New York (2007)

    MATH  Google Scholar 

  2. Avramidis, A.N., Wilson, J.R.: Correlation-induction techniques for estimating quantiles in simulation experiments. Oper. Res. 46(4), 574–591 (1998)

    Article  Google Scholar 

  3. Avramidis, A.N., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance-gamma model. Manag. Sci. 52(12), 1930–1944 (2006)

    Article  Google Scholar 

  4. Avramidis, A.N., L’Ecuyer, P., Tremblay, P.A.: Efficient simulation of gamma and variance-gamma processes. In: Proceedings of the 2003 Winter Simulation Conference, pp. 319–326. IEEE Press, Piscataway, New Jersey (2003)

    Google Scholar 

  5. Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. J. Comput. Financ. 1(1), 27–46 (1997)

    Article  Google Scholar 

  6. Chen, S., Dick, J., Owen, A.B.: Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Ann. Stat. 39(2), 673–701 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13(6), 904–914 (1976)

    Article  MathSciNet  Google Scholar 

  8. Demers, V., L’Ecuyer, P., Tuffin, B.: A combination of randomized quasi-Monte Carlo with splitting for rare-event simulation. In: Proceedings of the 2005 European Simulation and Modeling Conference, pp. 25–32. EUROSIS, Ghent, Belgium (2005)

    Google Scholar 

  9. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K. (2010)

    Book  Google Scholar 

  10. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006)

    Article  MathSciNet  Google Scholar 

  11. Dion, M., L’Ecuyer, P.: American option pricing with randomized quasi-Monte Carlo simulations. In: Proceedings of the 2010 Winter Simulation Conference, pp. 2705–2720 (2010)

    Google Scholar 

  12. Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen W., Srivastav A., Travaglini G. (eds.) A Panorama of Discrepancy Theory, pp. 621–678. Springer, Berlin (2014)

    MATH  Google Scholar 

  13. El Haddad, R., Lécot, C., L’Ecuyer, P., Nassif, N.: Quasi-Monte Carlo methods for Markov chains with continuous multidimensional state space. Math. Comput. Simul. 81, 560–567 (2010)

    Article  Google Scholar 

  14. Faure, H.: Discrépance des suites associées à un système de numération en dimension \(s\). Acta Arith. 61, 337–351 (1982)

    Article  Google Scholar 

  15. Gerber, M., Chopin, N.: Sequential quasi-Monte Carlo. J. R. Stat. Soc. Ser. B 77(Part 3), 509–579 (2015)

    Article  MathSciNet  Google Scholar 

  16. Haber, S.: A modified Monte Carlo quadrature. Math. Comput. 19, 361–368 (1966)

    Article  MathSciNet  Google Scholar 

  17. Hickernell, F.J.: The mean square discrepancy of randomized nets. ACM Trans. Model. Comput. Simul. 6(4), 274–296 (1996)

    Article  Google Scholar 

  18. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67(221), 299–322 (1998)

    Article  MathSciNet  Google Scholar 

  19. Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer, Berlin (2000)

    Chapter  Google Scholar 

  20. Hickernell, F.J.: Obtaining \({O(N^{-2+\epsilon })}\) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)

    Chapter  Google Scholar 

  21. Hickernell, F.J.: Error analysis for quasi-Monte Carlo methods. In: Glynn P.W., Owen A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2016 (2017)

    Google Scholar 

  22. Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for quasi-Monte Carlo. Stat. Sci. 20(1), 1–31 (2005)

    Article  MathSciNet  Google Scholar 

  23. Hong, H.S., Hickernell, F.H.: Algorithm 823: implementing scrambled digital sequences. ACM Trans. Math. Softw. 29, 95–109 (2003)

    Article  MathSciNet  Google Scholar 

  24. Imai, J., Tan, K.S.: Enhanced quasi-Monte Carlo methods with dimension reduction. In: Yücesan E., Chen C.H., Snowdon J.L., Charnes J.M. (eds.) Proceedings of the 2002 Winter Simulation Conference, pp. 1502–1510. IEEE Press, Piscataway, New Jersey (2002)

    Google Scholar 

  25. Imai, J., Tan, K.S.: A general dimension reduction technique for derivative pricing. J. Comput. Financ. 10(2), 129–155 (2006)

    Article  Google Scholar 

  26. Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30(5), 2635–2654 (2008)

    Article  MathSciNet  Google Scholar 

  27. L’Ecuyer, P.: Quasi-Monte Carlo methods in finance. In: Proceedings of the 2004 Winter Simulation Conference, pp. 1645–1655. IEEE Press, Piscataway, New Jersey (2004)

    Google Scholar 

  28. L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Financ. Stoch. 13(3), 307–349 (2009)

    Article  MathSciNet  Google Scholar 

  29. L’Ecuyer, P.: SSJ: Stochastic simulation in Java (2016). http://simul.iro.umontreal.ca/ssj/

  30. L’Ecuyer, P., Demers, V., Tuffin, B.: Rare-events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2), Article 9 (2007)

    Google Scholar 

  31. L’Ecuyer, P., Lécot, C., L’Archevêque-Gaudet, A.: On array-RQMC for Markov chains: mapping alternatives and convergence rates. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 485–500. Springer, Berlin (2009)

    Chapter  Google Scholar 

  32. L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56(4), 958–975 (2008)

    Article  Google Scholar 

  33. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46(9), 1214–1235 (2000)

    Article  Google Scholar 

  34. L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002)

    Google Scholar 

  35. L’Ecuyer, P., Munger, D.: On figures of merit for randomly-shifted lattice rules. In: Woźniakowski, H., Plaskota, L. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159. Springer, Berlin (2012)

    Chapter  Google Scholar 

  36. L’Ecuyer, P., Munger, D.: Algorithm 958: lattice builder: A general software tool for constructing rank-1 lattice rules. ACM Trans. Math. Softw. 42(2), Article 15 (2016)

    Google Scholar 

  37. L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for array-rqmc: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018). https://doi.org/10.1016/j.matcom.2016.07.010

    Article  MathSciNet  Google Scholar 

  38. L’Ecuyer, P., Munger, D., Tuffin, B.: On the distribution of integration error by randomly-shifted lattice rules. Electron. J. Stat. 4, 950–993 (2010)

    Article  MathSciNet  Google Scholar 

  39. L’Ecuyer, P., Sanvido, C.: Coupling from the past with randomized quasi-Monte Carlo. Math. Comput. Simul. 81(3), 476–489 (2010)

    Article  MathSciNet  Google Scholar 

  40. L’Ecuyer, P., Simard, R.: Inverting the symmetrical beta distribution. ACM Trans. Math. Softw. 32(4), 509–520 (2006)

    Article  MathSciNet  Google Scholar 

  41. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009)

    MATH  Google Scholar 

  42. Lemieux, C., Cieslak, M., Luttmer, K.: RandQMC user’s guide: a package for randomized Quasi-Monte Carlo methods in C (2004). Software user’s guide. http://www.math.uwaterloo.ca/~clemieux/randqmc.html

  43. Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM J. Sci. Comput. 24(5), 1768–1789 (2003)

    Article  MathSciNet  Google Scholar 

  44. Liu, R., Owen, A.B.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006)

    Article  MathSciNet  Google Scholar 

  45. Loh, W.L.: On the asymptotic distribution of scramble nets quadratures. Ann. Stat. 31, 1282–1324 (2003)

    Article  Google Scholar 

  46. Madan, D.B., Carr, P.P., Chang, E.C.: The variance gamma process and option pricing. Eur. Financ. Rev. 2, 79–105 (1998)

    Article  Google Scholar 

  47. Mara, T.A., Rakoto, J.O.: Comparison of some efficient methods to evaluate the main effect of computer model factors. J. Stat. Comput. Simul. 78(2), 167–178 (2008)

    Article  MathSciNet  Google Scholar 

  48. Matousěk, J.: On the \(L_2\)-discrepancy for anchored boxes. J. Complex. 14, 527–556 (1998)

    Article  Google Scholar 

  49. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (1999)

    Book  Google Scholar 

  50. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  51. Niederreiter, H., Xing, C.: Nets, \((t, s)\)-sequences, and algebraic geometry. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 267–302. Springer, New York (1998)

    Chapter  Google Scholar 

  52. Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, pp. 223–255. De Gruyter, Berlin (2014)

    Google Scholar 

  53. Owen, A.B.: Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer. Anal. 34(5), 1884–1910 (1997)

    Article  MathSciNet  Google Scholar 

  54. Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25(4), 1541–1562 (1997)

    Article  MathSciNet  Google Scholar 

  55. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul. 8(1), 71–102 (1998)

    Article  Google Scholar 

  56. Owen, A.B.: Variance with alternative scramblings of digital nets. ACM Trans. Model. Comput. Simul. 13(4), 363–378 (2003)

    Article  Google Scholar 

  57. Owen, A.B.: Better estimation of small sobol sensitivity indices. ACM Trans. Model. Comput. Simul. 23(2), Article 11 (2013)

    Google Scholar 

  58. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  59. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals. J. Complex. 14, 1–33 (1998)

    Article  MathSciNet  Google Scholar 

  60. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complex. 17(4), 697–721 (2001)

    Article  MathSciNet  Google Scholar 

  61. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. Math. Phys. 7(4), 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  62. Sobol’, I.M.: Sensitivity indices for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MATH  Google Scholar 

  63. Sobol’, I.M., Myshetskaya, E.E.: Monte Carlo estimators for small sensitivity indices. Monte Carlo Methods Appl. 13(5–6), 455–465 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic, Boston (1995)

    Chapter  Google Scholar 

  65. Tribble, S.D., Owen, A.B.: Constructions of weakly CUD sequences for MCMC. Electron. J. Stat. 2, 634–660 (2008)

    Article  MathSciNet  Google Scholar 

  66. Wächter, C., Keller, A.: Efficient simultaneous simulation of Markov chains. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 669–684. Springer, Berlin (2008)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by a Canada Research Chair, an Inria International Chair, a NSERC Discovery Grant, to the author. It was presented at the MCQMC conference with the help of SAMSI funding. David Munger made Figs. 9 and 10. Several comments from the Guest Editor Art Owen helped improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre L’Ecuyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

L’Ecuyer, P. (2018). Randomized Quasi-Monte Carlo: An Introduction for Practitioners. In: Owen, A., Glynn, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Springer Proceedings in Mathematics & Statistics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-91436-7_2

Download citation

Publish with us

Policies and ethics