Rediscovering Isotype from a Cognitive Perspective

  • Günther SchrederEmail author
  • Nicole Hynek
  • Florian Windhager
  • Eva Mayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10871)


Almost 100 years ago, Otto Neurath developed the Isotype (International System of Typographic Picture Education) method to communicate statistical information to the broad public in an intuitive, pictorial way. It translates numerical data into arrangements of repeated pictograms. This method is still well-used in information design and data journalism. Neurath’s original publications contained a lot of assumptions on how Isotype diagrams are processed by recipients: e.g. they can be understood easily, because pictograms are processed in the same way as everyday observations of the same concepts. But documented empirical proof was entirely missing. We present a model for the reception of Isotype-like diagrams from a cognitive perspective. This model includes Isotype’s positive effects of countability, iconicity and ancillary semantic information on graph comprehension. Positive effects on engagement and perceived attractiveness are included as additional factors commonly attributed to Isotype. We discuss existing empirical studies, point out research gaps and propose a roadmap for further research.


Isotype Information visualization Pictographs Pictorial representation 


  1. Bateman, S., Mandryk, R.L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2573–2582. ACM, New York (2010)Google Scholar
  2. Borkin, M.A., Bylinskii, Z., Kim, N.W., Bainbridge, C.M., Yeh, C.S., Borkin, D., Pfister, H., Oliva, A.: Beyond memorability: visualization recognition and recall. IEEE Trans. Vis. Comput. Graph. 22(1), 519–528 (2016)CrossRefGoogle Scholar
  3. Bourdon, B.: Sur le temps nécessaire pour nommer les nombres. Revue philosophique de la France et de l’étranger 65, 426–431 (1908)Google Scholar
  4. Boy, J., Pandey, A.V., Emerson, J., Satterthwaite, M., Nov, O., Bertini, E.: Showing people behind data: does anthropomorphizing visualizations elicit more empathy for human rights data? In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5462–5474. ACM, May 2017Google Scholar
  5. Brase, G.L.: Pictorial representations in statistical reasoning. Appl. Cogn. Psychol. 23(3), 369–381 (2009)CrossRefGoogle Scholar
  6. Brase, G.L.: The power of representation and interpretation: doubling statistical reasoning performance with icons and frequentist interpretations of ambiguous numbers. J. Cogn. Psychol. 26(1), 81–97 (2014)CrossRefGoogle Scholar
  7. Byrne, L., Angus, D., Wiles, J.: Figurative frames: a critical vocabulary for images in information visualization. Inf. Vis. (2017). Scholar
  8. Carpenter, P.A., Shah, P.: A model of the perceptual and conceptual processes in graph comprehension. J. Exp. Psychol.: Appl. 4(2), 75 (1998)Google Scholar
  9. Choo, H., Franconeri, S.L.: Enumeration of small collections violates Weber’s law. Psychon. Bull. Rev. 21, 93–99 (2013). Scholar
  10. Friel, S.N., Curcio, F.R., Bright, G.W.: Making sense of graphs: critical factors influencing comprehension and instructional implications. J. Res. Math. Educ. 32, 124–158 (2001)CrossRefGoogle Scholar
  11. Gaissmaier, W., Wegwarth, O., Skopec, D., Müller, A.S., Broschinski, S., Politi, M.C.: Numbers can be worth a thousand pictures: individual differences in understanding graphical and numerical representations of health-related information. Health Psychol. 31(3), 286 (2012)CrossRefGoogle Scholar
  12. Gesellschafts- und Wirtschaftsmuseum Wien: Gesellschaft und Wirtschaft: bildstatistisches Elementarwerk. Bibliographisches Institut, Leipzig (1930)Google Scholar
  13. Graf, L.K., Landwehr, J.R.: A dual-process perspective on fluency-based aesthetics: the pleasure-interest model of aesthetic liking. Pers. Soc. Psychol. Rev. 19(4), 395–410 (2015)CrossRefGoogle Scholar
  14. Haroz, S., Kosara, R., Franconeri, S.L.: Isotype visualization: working memory, performance, and engagement with pictographs. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1191–1200. ACM, April 2015Google Scholar
  15. Hartmann, F.: After Neurath: the quest for an inclusive form of the icon. In: Symposium Lecture at Stroom, Den Haag (2006a).
  16. Hartmann, F.: Bildersprache [picture language]. In: Hartmann, F., Bauer, E.K. (Hg.) Bildersprache. Otto Neurath Visualisierungen, S. 15–105. Facultas Verlag, Wien (2006b)Google Scholar
  17. Holmes, N.: Designer’s Guide to Creating Charts and Diagrams. Watson-Guptill Publications, New York (1984)Google Scholar
  18. Jansen, W.: Neurath, Arntz and ISOTYPE: the legacy in art, design and statistics. J. Des. Hist. 22, 227–242 (2009)Google Scholar
  19. Lin, S., Fortuna, J., Kulkarni, C., Stone, M., Heer, J.: Selecting semantically-resonant colors for data visualization. Comput. Graph. Forum 32(34), 401–410 (2013). Scholar
  20. Macdonald-Ross, M.: How numbers are shown. Educ. Technol. Res. Dev. 25(4), 359–409 (1977)Google Scholar
  21. McDowell, M., Jacobs, P.: Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychol. Bull. (2017). Scholar
  22. Neurath, M., Kinross, R.: The Transformer. Principles of Making Isotype Charts. Hyphen Press, London (2009)Google Scholar
  23. Neurath, O.: International Picture Language. The First Rules of Isotype. Kegan Paul & Company, London (1936)Google Scholar
  24. Neurath, O.: Modern Man in the Making. Knopf, New York (1939)Google Scholar
  25. Neurath, O.: From Hieroglyphics to Isotype: A Visual Autobiography. Hyphen Press, London (2010)Google Scholar
  26. Neurath, O.: From Vienna Method to Isotype. In: Empiricism and Sociology, pp. 214–248. Springer, Dordrecht (1973)Google Scholar
  27. Pousman, Z., Stasko, J., Mateas, M.: Casual information visualization: depictions of data in everyday life. IEEE Trans. Vis. Comput. Graph. 13(6), 1145–1152 (2007)CrossRefGoogle Scholar
  28. Rehkämper, K.: Some remarks on pictorial statistics. In: Bulletin of the International Statistical Institute Proceedings of the 58th World Statistics Congress 2011, Dublin, pp. 4112–4114. International Statistical Institute, The Hague (2011)Google Scholar
  29. Revkin, S.K., Piazza, M., Izard, V., Cohen, L., Dehaene, S.: Does subitizing reflect numerical estimation? Psychol. Sci. 19(6), 607–614 (2008). Scholar
  30. Tufte, E.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)Google Scholar
  31. Tversky, B.: Visualizing thought. Top. Cogn. Sci. 3, 499–535 (2011)CrossRefGoogle Scholar
  32. Vernon, M.D.: Learning from graphical material. Br. J. Psychol. 36, 145–158 (1946)Google Scholar
  33. Zikmund-Fisher, B.J., Witteman, H.O., Dickson, M., Fuhrel-Forbis, A., Kahn, V.C., Exe, N.L., Valerio, M., Holtzman, L.G., Scherer, L.D., Fagerlin, A.: Blocks, ovals, or people? Icon type affects risk perceptions and recall of pictographs. Med. Decis. Mak. 34(4), 443–453 (2014). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Danube University KremsKremsAustria

Personalised recommendations